Abstract

The present study deals with both numerical and experimental evaluation of failure strain and fracture pattern during shock tube impact forming of 1.5 mm thick AA 5052-H32 sheet. A hemispherical end nylon striker is propelled to deform the sheet at different velocities. Here, the main objective is to understand the effect of flow stress models and fracture models on the forming outputs. The experimental situation is modeled in two stages, i.e., incorporating the pressure in the first stage and displacement of the striker in the second stage in finite element simulation using the finite element (FE) code (DEFORM-3D). A new strategy followed to evaluate the rate-dependent flow stress data from the tensile test of samples sectioned from shock tube-based deformed sheet is acceptable, and finite element simulations incorporating these properties predicted accurate failure strain and fracture pattern. Out of all the flow stress models, the modified Johnson–Cook model has a better flow stress predictability due to the inclusion of the non-linear strain rate sensitivity term in the model. During the prediction of the failure strain and necking location, the Cockcroft–Latham failure model, Brozzo failure model, and Freudenthal failure model have a fair agreement with experimental data in combination with the two flow stress models, i.e., Johnson–Cook model and modified Johnson–Cook model.

References

1.
Çetin
,
M. E.
,
Cora
,
ÖN
, and
Sofuoğlu
,
H.
,
2020
, “
Micro Deep Drawability of the Superplastic Zn–22Al Alloy at a High Strain Rate and Room Temperature
,”
ASME J. Eng. Mater. Technol.
,
142
(
1
), p.
011008
.
2.
Acar
,
D.
,
Türköz
,
M.
,
Gedikli
,
H.
,
Selçuk Halkacı
,
H.
, and
Necati Cora
,
Ö
,
2018
, “
Warm Hydromechanical Deep Drawing of AA 5754-O and Optimization of Process Parameters
,”
ASME J. Eng. Mater. Technol.
,
140
(
1
), p.
011012
.
3.
Cao
,
Q.
,
Li
,
L.
,
Lai
,
Z.
,
Zhou
,
Z.
,
Xiong
,
Q.
,
Zhang
,
X.
, and
Han
,
X.
,
2014
, “
Dynamic Analysis of Electromagnetic Sheet Metal Forming Process Using Finite Element Method
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
361
368
.
4.
Grolleau
,
V.
,
Gary
,
G.
, and
Mohr
,
D.
,
2008
, “
Biaxial Testing of Sheet Materials at High Strain Rates Using Viscoelastic Bars
,”
Exp. Mech.
,
48
(
3
), pp.
293
306
.
5.
Imbert
,
J. M.
,
Winkler
,
S. L.
,
Worswick
,
M. J.
,
Oliveira
,
D. A.
, and
Golovashchenko
,
S.
,
2005
, “
The Effect of Tool–Sheet Interaction on Damage Evolution in Electromagnetic Forming of Aluminum Alloy Sheet
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
145
153
.
6.
Ahmed
,
M.
,
Kumar
,
D. R.
, and
Nabi
,
M.
,
2017
, “
Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process
,”
J. Mater. Eng. Perform.
,
26
(
1
), pp.
439
452
.
7.
Balanethiram
,
V. S.
, and
Daehn
,
G. S.
,
1992
, “
Enhanced Formability of Interstitial Free Iron at High Strain Rates
,”
Scr. Metall. Mater.
,
27
(
12
), pp.
1783
1788
.
8.
Noh
,
H.-G.
,
Song
,
W.-J.
,
Kang
,
B.-S.
, and
Kim
,
J.
,
2015
, “
Two-Step Electromagnetic Forming Process Using Spiral Forming Coils to Deform Sheet Metal in a Middle-Block Die
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1691
1703
.
9.
Thomas
,
G. O.
, and
Oakley
,
G. L.
,
2020
, “
A Study of the Strain Response of Stainless Steel 304 to Extreme Uniform Instantaneous Explosion Pressure Loads
,”
ASME J. Eng. Mater. Technol.
,
142
(
1
), p.
011007
.
10.
Rohatgi
,
A.
,
Stephens
,
E. V.
,
Davies
,
R. W.
,
Smith
,
M. T.
,
Soulami
,
A.
, and
Ahzi
,
S.
,
2012
, “
Electro-Hydraulic Forming of Sheet Metals: Free-Forming vs. Conical-Die Forming
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1070
1079
.
11.
Barik
,
S. K.
,
Narayanan
,
R. G.
, and
Sahoo
,
N.
,
2019
, “Experimental Investigation on the Forming of AA 5052-H32 Sheet Using a Rigid-Body-Based Impact in a Shock Tube,”
Advances in Forming, Machining and Automation
,
M. S.
Shunmugam
and
M.
Kanthababu
, eds.,
Springer
,
New York
, pp.
79
90
.
12.
Barik
,
S. K.
,
Narayanan
,
R. G.
, and
Sahoo
,
N.
,
2020
, “
Forming Response of AA5052–H32 Sheet Deformed Using a Shock Tube
,”
Trans. Nonferrous Met. Soc. China
,
30
(
3
), pp.
603
618
.
13.
Ray
,
N.
,
Jagadeesh
,
G.
, and
Suwas
,
S.
,
2015
, “
Response of Shock Wave Deformation in AA5086 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
622
, pp.
219
227
.
14.
Stoffel
,
M.
,
2005
, “
An Experimental Method to Validate Viscoplastic Constitutive Equations in the Dynamic Response of Plates
,”
Mech. Mater.
,
37
(
12
), pp.
1210
1222
.
15.
Justusson
,
B.
,
Pankow
,
M.
,
Heinrich
,
C.
,
Rudolph
,
M.
, and
Waas
,
A. M.
,
2013
, “
Use of a Shock Tube to Determine the Bi-Axial Yield of an Aluminum Alloy Under High Rates
,”
Int. J. Impact Eng.
,
58
, pp.
55
65
.
16.
Koohbor
,
B.
,
Kidane
,
A.
, and
Lu
,
W.-Y.
,
2016
, “
Characterizing the Constitutive Response and Energy Absorption of Rigid Polymeric Foams Subjected to Intermediate-Velocity Impact
,”
Polym. Test.
,
54
, pp.
48
58
.
17.
Koohbor
,
B.
,
Kidane
,
A.
,
Lu
,
W. Y.
, and
Sutton
,
M. A.
,
2016
, “
Investigation of the Dynamic Stress-Strain Response of Compressible Polymeric Foam Using a Non-Parametric Analysis
,”
Int. J. Impact Eng.
,
91
, pp.
170
182
.
18.
Gupta
,
N. K.
,
Iqbal
,
M. A.
, and
Sekhon
,
G. S.
,
2008
, “
Effect of Projectile Nose Shape, Impact Velocity and Target Thickness on the Deformation Behavior of Layered Plates
,”
Int. J. Impact Eng.
,
35
(
1
), pp.
37
60
.
19.
Kpenyigba
,
K. M.
,
Jankowiak
,
T.
,
Rusinek
,
A.
, and
Pesci
,
R.
,
2013
, “
Influence of Projectile Shape on Dynamic Behavior of Steel Sheet Subjected to Impact and Perforation
,”
Thin Walled Struct.
,
65
, pp.
93
104
.
20.
Abed
,
F.
, and
Makarem
,
F.
,
2012
, “
Comparisons of Constitutive Models for Steel Over a Wide Range of Temperatures and Strain Rates
,”
ASME J. Eng. Mater. Technol.
,
134
(
2
), p.
021001
.
21.
Shin
,
H.
, and
Kim
,
J.-B.
,
2010
, “
A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021009
.
22.
Chen
,
G.
,
Ren
,
C.
,
Ke
,
Z.
,
Li
,
J.
, and
Yang
,
X.
,
2016
, “
Modeling of Flow Behavior for 7050-T7451 Aluminum Alloy Considering Microstructural Evolution Over a Wide Range of Strain Rates
,”
Mech. Mater.
,
95
, pp.
146
157
.
23.
Wang
,
B.
,
Liu
,
Z.
,
Song
,
Q.
,
Wan
,
Y.
, and
Ren
,
X.
,
2019
, “
A Modified Johnson–Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011012
.
24.
Paturi
,
U. M. R.
,
Narala
,
S. K. R.
, and
Pundir
,
R. S.
,
2014
, “
Constitutive Flow Stress Formulation, Model Validation and FE Cutting Simulation for AA7075-T6 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
605
, pp.
176
185
.
25.
Tian
,
Y.
,
Huang
,
L.
,
Ma
,
H.
, and
Li
,
J.
,
2014
, “
Establishment and Comparison of Four Constitutive Models of 5A02 Aluminium Alloy in High-Velocity Forming Process
,”
Mater. Des.
,
54
, pp.
587
597
.
26.
Bal
,
B.
,
Karaveli
,
K. K.
,
Cetin
,
B.
, and
Gumus
,
B.
,
2019
, “
The Precise Determination of the Johnson–Cook Material and Damage Model Parameters and Mechanical Properties of an Aluminum 7068-T651 Alloy
,”
ASME J. Eng. Mater. Technol.
,
141
(
4
), p.
041001
.
27.
Tan
,
J. Q.
,
Zhan
,
M.
,
Liu
,
S.
,
Huang
,
T.
,
Guo
,
J.
, and
Yang
,
H.
,
2015
, “
A Modified Johnson–Cook Model for Tensile Flow Behaviors of 7050-T7451 Aluminum Alloy at High Strain Rates
,”
Mater. Sci. Eng. A
,
631
, pp.
214
219
.
28.
Song
,
P.
,
Li
,
W.
,
Wang
,
X.
, and
Xu
,
W.
,
2019
, “
Study on Mechanical Properties and Constitutive Model of 5052 Aluminium Alloy
,”
Mater. Sci. Technol.
,
35
(
8
), pp.
916
924
.
29.
Sakash
,
A.
,
Moondra
,
S.
, and
Kinsey
,
B. L.
,
2006
, “
Effect of Yield Criterion on Numerical Simulation Results Using a Stress-Based Failure Criterion
,”
ASME J. Eng. Mater. Technol.
,
128
(
3
), pp.
436
444
.
30.
Jie
,
M.
,
Cheng
,
C. H.
,
Chan
,
L. C.
,
Chow
,
C. L.
, and
Tang
,
C. Y.
,
2007
, “
Experimental and Theoretical Analysis on Formability of Aluminum Tailor-Welded Blanks
,”
ASME J. Eng. Mater. Technol.
,
129
(
1
), pp.
151
158
.
31.
Hill
,
R.
,
1952
, “
On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
1
(
1
), pp.
19
30
.
32.
Marciniak
,
Z.
, and
Kuczyński
,
K.
,
1967
, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
(
9
), pp.
609
620
.
33.
Takuda
,
H.
,
Mori
,
K.
, and
Hatta
,
N.
,
1999
, “
The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals
,”
J. Mater. Process. Technol.
,
95
(
1–3
), pp.
116
121
.
34.
Heidari
,
A.
,
Ghassemi
,
A.
, and
Atrian
,
A.
,
2020
, “
A Numerical and Experimental Investigation of Temperature Effects on the Formability of AA6063 Sheets Using Different Ductile Fracture Criteria
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5
), pp.
2595
2611
.
35.
Dizaji
,
S. A.
,
Darendeliler
,
H.
, and
Kaftanoğlu
,
B.
,
2016
, “
Effect of Hardening Models on Different Ductile Fracture Criteria in Sheet Metal Forming
,”
Int. J. Mater. Form.
,
9
(
3
), pp.
261
267
.
36.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. A
,
193
(
1033
), pp.
281
297
.
37.
Kinsey
,
B. L.
, and
Cao
,
J.
,
2003
, “
An Analytical Model for Tailor Welded Blank Forming
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
344
351
.
38.
Dixit
,
P. M.
, and
Dixit
,
U. S.
,
2014
,
Plasticity: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
39.
Wagoner
,
R. H.
, and
Chenot
,
J.-L.
,
1996
,
Fundamentals of Metal Forming
,
John Wiley & Sons Inc.
,
New York
.
40.
Rusinek
,
A.
,
Rodríguez-Martínez
,
J. A.
,
Zaera
,
R.
,
Klepaczko
,
J. R.
,
Arias
,
A.
, and
Sauvelet
,
C.
,
2009
, “
Experimental and Numerical Study on the Perforation Process of Mild Steel Sheets Subjected to Perpendicular Impact by Hemispherical Projectiles
,”
Int. J. Impact Eng.
,
36
(
4
), pp.
565
587
.
41.
Durban
,
D.
, and
Budiansky
,
B.
,
1978
, “
Plane-Strain Radial Flow of Plastic Materials
,”
J. Mech. Phys. Solids
,
26
(
5–6
), pp.
303
324
.
42.
Sherwood
,
J. D.
, and
Durban
,
D.
,
1996
, “
Squeeze Flow of a Power-Law Viscoplastic Solid
,”
J. Non-Newtonian Fluid Mech.
,
62
(
1
), pp.
35
54
.
43.
Habibi
,
N.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H.-R.
,
2015
, “
An Investigation Into the Fracture Mechanisms of Twinning-Induced-Plasticity Steel Sheets Under Various Strain Paths
,”
J. Mater. Process. Technol.
,
224
, pp.
102
116
.
44.
Smerd
,
R.
,
Winkler
,
S.
,
Salisbury
,
C.
,
Worswick
,
M.
,
Lloyd
,
D.
, and
Finn
,
M.
,
2006
, “
High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
541
560
.
45.
Noh
,
H.-G.
,
Lee
,
K.
,
Kang
,
B.-S.
, and
Kim
,
J.
,
2016
, “
Inverse Parameter Estimation of the Cowper-Symonds Material Model for Electromagnetic Free Bulge Forming
,”
Int. J. Precis. Eng. Manuf.
,
17
(
11
), pp.
1483
1492
.
46.
Khodko
,
O.
,
Zaytsev
,
V.
,
Sukaylo
,
V.
,
Verezub
,
N.
, and
Scicluna
,
S.
,
2015
, “
Experimental and Numerical Investigation of Processes That Occur During High Velocity Hydroforming Technologies: An Example of Tubular Blank Free Bulging During Hydrodynamic Forming
,”
J. Manuf. Process.
,
20
, pp.
304
313
.
47.
Deng
,
H.
,
Mao
,
Y.
,
Li
,
G.
, and
Cui
,
J.
,
2019
, “
A Study of Electromagnetic Free Forming in AA5052 Using Digital Image Correlation Method and FE Analysis
,”
J. Manuf. Process.
,
37
, pp.
595
605
.
48.
Rao
,
A. V.
,
Ramakrishnan
,
N.
, and
Kumar
,
K.
,
2003
, “
A Comparative Evaluation of the Theoretical Failure Criteria for Workability in Cold Forging
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
29
42
.
49.
Hambli
,
R.
, and
Reszka
,
M.
,
2002
, “
Fracture Criteria Identification Using an Inverse Technique Method and Blanking Experiment
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1349
1361
.
50.
Novella
,
M. F.
,
Ghiotti
,
A.
,
Bruschi
,
S.
, and
Bariani
,
P. F.
,
2015
, “
Ductile Damage Modeling at Elevated Temperature Applied to the Cross Wedge Rolling of AA6082-T6 Bars
,”
J. Mater. Process. Technol.
,
222
, pp.
259
267
.
51.
Chen
,
L.
,
Zhao
,
G.
, and
Yu
,
J.
,
2015
, “
Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy
,”
Mater. Des.
,
74
, pp.
25
35
.
You do not currently have access to this content.