Abstract

The electrical conductivity and percolation onset of graphene-based nanocomposites are studied by varying both planar and transversal aspect ratios of graphene nanoplatelets (GNP) fillers using a three-dimensional stochastic percolation-based model. The graphene nanoplatelets are modeled as elliptical fillers to enable planar aspect ratio variations. We find that decreasing the graphite’s thickness results in an exponential performance improvement of the nanocomposites, in contrast to a linear improvement obtained when the planar aspect ratio is increased, for the same filler volume. Furthermore, we show that hybrid nanocomposites fabricated with partial replacement of GNP by carbon nanotube (CNT) may improve the electrical performance of the GNP monofiller composites. Improvement or deterioration of the electrical properties is mainly based on the morphology and content of the fillers mixed in the hybrids. Nonetheless, using a minimal amount of CNT for substitution always leads to the highest improvement in conductivity in the hybrids, while additional CNTs only lead to smaller improvement at best or even deterioration. The results are validated against experimental works and offer useful insights for the fabrication of highly conductive nanocomposites.

References

1.
Mittal
,
G.
,
Dhand
,
V.
,
Rhee
,
K. Y.
,
Park
,
S. J.
, and
Lee
,
W. R.
,
2015
, “
A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites
,”
J. Ind. Eng. Chem.
,
21
, pp.
11
25
.
2.
Kong
,
L.
, and
Chen
,
W.
,
2014
, “
Carbon Nanotube and Graphene-Based Bioinspired Electrochemical Actuators
,”
Adv. Mater.
,
26
(
7
), pp.
1025
1043
.
3.
Du
,
J.
,
Zhao
,
L.
,
Zeng
,
Y.
,
Zhang
,
L.
,
Li
,
F.
,
Liu
,
P.
, and
Liu
,
C.
,
2011
, “
Comparison of Electrical Properties Between Multi-walled Carbon Nanotube and Graphene Nanosheet/High Density Polyethylene Composites With a Segregated Network Structure
,”
Carbon
,
49
(
4
), pp.
1094
1100
.
4.
Huang
,
X.
,
Yin
,
Z.
,
Wu
,
S.
,
Qi
,
X.
,
He
,
Q.
,
Zhang
,
Q.
,
Yan
,
Q.
,
Boey
,
F.
, and
Zhang
,
H.
,
2011
, “
Graphene-based Materials: Synthesis, Characterization, Properties, and Applications
,”
Small
,
7
(
14
), pp.
1876
1902
.
5.
Singh
,
V.
,
Joung
,
D.
,
Zhai
,
L.
,
Das
,
S.
,
Khondaker
,
S. I.
, and
Seal
,
S.
,
2011
, “
Graphene Based Materials: Past, Present and Future
,”
Prog. Mater. Sci.
,
56
(
8
), pp.
1178
1271
.
6.
Cataldi
,
P.
,
Athanassiou
,
A.
, and
Bayer
,
I. S.
,
2018
, “
Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications
,”
Appl. Sci.
,
8
(
9
), p.
1438
.
7.
Svedberg
,
T.
, and
Pedersen
,
K. O.
,
1940
,
The Ultracentrifuge
,
Clarendon Press
,
Oxford
.
8.
Hassoun
,
J.
,
Bonaccorso
,
F.
,
Agostini
,
M.
,
Angelucci
,
M.
,
Betti
,
M. G.
,
Cingolani
,
R.
,
Gemmi
,
M.
,
Mariani
,
C.
,
Panero
,
S.
,
Pellegrini
,
V.
, and
Scrosati
,
B.
,
2014
, “
An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode
,”
Nano Lett.
,
14
(
8
), pp.
4901
4906
.
9.
Li
,
J.
, and
Kim
,
J. K.
,
2007
, “
Percolation Threshold of Conducting Polymer Composites Containing 3D Randomly Distributed Graphite Nanoplatelets
,”
Compos. Sci. Technol.
,
67
(
10
), pp.
2114
2120
.
10.
Payandehpeyman
,
J.
,
Mazaheri
,
M.
, and
Khamehchi
,
M.
,
2020
, “
Prediction of Electrical Conductivity of Polymer-Graphene Nanocomposites by Developing an Analytical Model Considering Interphase, Tunneling and Geometry Effects
,”
Compos. Commun.
,
21
, p.
100364
.
11.
Mazaheri
,
M.
,
Payandehpeyman
,
J.
, and
Khamehchi
,
M.
,
2020
, “
A Developed Theoretical Model for Effective Electrical Conductivity and Percolation Behavior of Polymer-Graphene Nanocomposites With Various Exfoliated Filleted Nanoplatelets
,”
Carbon
,
169
, pp.
264
275
.
12.
Folorunso
,
O.
,
Hamam
,
Y.
,
Sadiku
,
R.
,
Ray
,
S. S.
, and
Adekoya
,
G. J.
,
2020
, “
Statistical Characterization and Simulation of Graphene-Loaded Polypyrrole Composite Electrical Conductivity
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
15788
15801
.
13.
Wang
,
Y.
,
Shan
,
J. W.
, and
Weng
,
G. J.
,
2015
, “
Percolation Threshold and Electrical Conductivity of Graphene-Based Nanocomposites With Filler Agglomeration and Interfacial Tunneling
,”
J. Appl. Phys.
,
118
(
6
), p.
065101
.
14.
Kirkpatrick
,
S.
,
1973
, “
Percolation and Conduction
,”
Rev. Mod. Phys.
,
45
(
4
), pp.
574
588
.
15.
Maxwell
,
K. S.
,
2013
, “
Computational Analysis of Carbon Nanotube Networks in Multifunctional Polymer Nanocomposites
,”
Doctoral dissertation
,
Texas A&M University
,
College Station, TX
.
16.
Grujicic
,
M.
,
Cao
,
G.
, and
Roy
,
W. N.
,
2004
, “
A Computational Analysis of the Percolation Threshold and the Electrical Conductivity of Carbon Nanotubes Filled Polymeric Materials
,”
J. Mater. Sci.
,
39
(
14
), pp.
4441
4449
.
17.
Ma
,
H. M.
, and
Gao
,
X. L.
,
2008
, “
A Three-Dimensional Monte Carlo Model for Electrically Conductive Polymer Matrix Composites Filled With Curved Fibers
,”
Polymer
,
49
(
19
), pp.
4230
4238
.
18.
Gong
,
S.
,
Zhu
,
Z. H.
, and
Meguid
,
S. A.
,
2015
, “
Anisotropic Electrical Conductivity of Polymer Composites With Aligned Carbon Nanotubes
,”
Polymer
,
56
, pp.
498
506
.
19.
Gong
,
S.
, and
Zhu
,
Z. H.
,
2014
, “
On the Mechanism of Piezoresistivity of Carbon Nanotube Polymer Composites
,”
Polymer
,
55
(
16
), pp.
4136
4149
.
20.
Wang
,
W.
, and
Jayatissa
,
A. H.
,
2015
, “
Computational and Experimental Study of Electrical Conductivity of Graphene/Poly(Methyl Methacrylate) Nanocomposite Using Monte Carlo Method and Percolation Theory
,”
Synth. Met.
,
204
, pp.
141
147
.
21.
Zabihi
,
Z.
, and
Araghi
,
H.
,
2016
, “
Monte Carlo Simulations of Effective Electrical Conductivity of Graphene/Poly(Methyl Methacrylate) Nanocomposite: Landauer-Buttiker Approach
,”
Synth. Met.
,
217
, pp.
87
93
.
22.
Gbaguidi
,
A.
,
Namilae
,
S.
, and
Kim
,
D.
,
2018
, “
Monte Carlo Model for Piezoresistivity of Hybrid Nanocomposites
,”
ASME J. Eng. Mater. Technol.
,
140
(
1
), p.
011007
.
23.
Chanteli
,
A.
, and
Tserpes
,
K. I.
,
2015
, “
Finite Element Modeling of Carbon Nanotube Agglomerates in Polymers
,”
Compos. Struct.
,
132
, pp.
1141
1148
.
24.
Dalmas
,
F.
,
Dendievel
,
R.
,
Chazeau
,
L.
,
Cavaillé
,
J. Y.
, and
Gauthier
,
C.
,
2006
, “
Carbon Nanotube-Filled Polymer Composites. Numerical Simulation of Electrical Conductivity in Three-Dimensional Entangled Fibrous Networks
,”
Acta Mater.
,
54
(
11
), pp.
2923
2931
.
25.
Hu
,
N.
,
Masuda
,
Z.
,
Yan
,
C.
,
Yamamoto
,
G.
,
Fukunaga
,
H.
, and
Hashida
,
T.
,
2008
, “
The Electrical Properties of Polymer Nanocomposites With Carbon Nanotube Fillers
,”
Nanotechnology
,
19
(
21
), p.
215701
.
26.
Berhan
,
L.
, and
Sastry
,
A. M.
,
2007
, “
Modeling Percolation in High-Aspect-Ratio Fiber Systems. I. Soft-Core Versus Hard-Core Models
,”
Phys. Rev. E
,
75
(
4
), p.
041120
.
27.
Alamusi
,
N. Hu
,
Fukunaga
,
H.
,
Atobe
,
S.
,
Liu
,
Y.
, and
Li
,
J.
,
2011
, “
Piezoresistive Strain Sensors Made From Carbon Nanotubes Based Polymer Nanocomposites
,”
Sensors
,
11
(
11
), pp.
10691
10723
.
28.
Yi
,
Y.-B.
,
Wang
,
C.-W.
, and
Sastry
,
A. M.
,
2004
, “
Two-Dimensional vs. Three-Dimensional Clustering and Percolation in Fields of Overlapping Ellipsoids
,”
J. Electrochem. Soc.
,
151
(
8
), p.
A1292
.
29.
Al-Saleh
,
M. H.
,
2015
, “
Electrical and Mechanical Properties of Graphene/Carbon Nanotube Hybrid Nanocomposites
,”
Synth. Met.
,
209
, pp.
41
46
.
30.
Li
,
J.
,
Wong
,
P. S.
, and
Kim
,
J. K.
,
2008
, “
Hybrid Nanocomposites Containing Carbon Nanotubes and Graphite Nanoplatelets
,”
Mater. Sci. Eng. A
,
483
, pp.
660
663
.
31.
Yu
,
A.
,
Ramesh
,
P.
,
Sun
,
X.
,
Bekyarova
,
E.
,
Itkis
,
M. E.
, and
Haddon
,
R. C.
,
2008
, “
Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet—Carbon Nanotube Filler for Epoxy Composites
,”
Adv. Mater.
,
20
(
24
), pp.
4740
4744
.
32.
Tung
,
V. C.
,
Chen
,
L. M.
,
Allen
,
M. J.
,
Wassei
,
J. K.
,
Nelson
,
K.
,
Kaner
,
R. B.
, and
Yang
,
Y.
,
2009
, “
Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors
,”
Nano Lett.
,
9
(
5
), pp.
1949
1955
.
33.
Kondo
,
D.
,
Sato
,
S.
, and
Awano
,
Y.
,
2008
, “
Self-organization of Novel Carbon Composite Structure: Graphene Multi-layers Combined Perpendicularly With Aligned Carbon Nanotubes
,”
Appl. Phys. Express
,
1
(
7
), p.
074003
.
34.
Zhu
,
H. Q.
,
Zhang
,
Y. M.
,
Yue
,
L.
,
Li
,
W. S.
,
Li
,
G. L.
,
Shu
,
D.
, and
Chen
,
H. Y.
,
2008
, “
Graphite-Carbon Nanotube Composite Electrodes for all Vanadium Redox Flow Battery
,”
J. Power Sources
,
184
(
2
), pp.
637
640
.
35.
Kim
,
Y. K.
, and
Min
,
D. H.
,
2009
, “
Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layers as a Transparent Electrode
,”
Langmuir
,
25
(
19
), pp.
11302
11306
.
36.
Yue
,
L.
,
Pircheraghi
,
G.
,
Monemian
,
S. A.
, and
Manas-Zloczower
,
I.
,
2014
, “
Epoxy Composites With Carbon Nanotubes and Graphene Nanoplatelets—Dispersion and Synergy Effects
,”
Carbon
,
78
, pp.
268
278
.
37.
Poornima
,
Rashmi
,
Sundara Rajan
,
J.
,
2021
, “
Effective Use of Nano-carbons in Controlling the Electrical Conductivity of Epoxy Composites
,”
Compos. Sci. Technol.
,
202
, p.
108554
.
38.
Aussawasathien
,
D.
, and
Hrimchum
,
K.
,
2021
, “
Carboxylic-Plasma-Treated Nanofiller Hybrids in Carbon Fiber Reinforced Epoxy Composites: Dispersion and Synergetic Effects
,”
Express Polym. Lett.
,
15
(
3
), pp.
262
273
.
39.
Rostami
,
A.
, and
Moosavi
,
M. I.
,
2020
, “
High-Performance Thermoplastic Polyurethane Nanocomposites Induced by Hybrid Application of Functionalized Graphene and Carbon Nanotubes
,”
J. Appl. Polym. Sci.
,
137
(
14
), p.
48520
.
40.
Dey
,
B.
,
Ahmad
,
M. W.
,
ALMezeni
,
A.
,
Sarkhel
,
G.
,
Bag
,
D. S.
, and
Choudhury
,
A.
,
2020
, “
Enhancing Electrical, Mechanical, and Thermal Properties of Polybenzimidazole by 3D Carbon Nanotube@Graphene Oxide Hybrid
,”
Compos. Commun.
,
17
, pp.
87
96
.
41.
Cai
,
D.
,
Song
,
M.
, and
Xu
,
C.
,
2008
, “
Highly Conductive Carbon-Nanotube/Graphite-Oxide Hybrid Films
,”
Adv. Mater.
,
20
(
9
), pp.
1706
1709
.
42.
Fan
,
Z.
,
Yan
,
J.
,
Zhi
,
L.
,
Zhang
,
Q.
,
Wei
,
T.
,
Feng
,
J.
,
Zhang
,
M.
,
Qian
,
W.
, and
Wei
,
F.
,
2010
, “
A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors
,”
Adv. Mater.
,
22
(
23
), pp.
3723
3728
.
43.
Yoo
,
E. J.
,
Kim
,
J.
,
Hosono
,
E.
,
Zhou
,
H. S.
,
Kudo
,
T.
, and
Honma
,
I.
,
2008
, “
Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries
,”
Nano Lett.
,
8
(
8
), pp.
2277
2282
.
44.
Safdari
,
M.
, and
Al-Haik
,
M.
,
2012
, “
Electrical Conductivity of Synergistically Hybridized Nanocomposites Based on Graphite Nanoplatelets and Carbon Nanotubes
,”
Nanotechnology
,
23
(
40
), p.
405202
.
45.
Sagalianov
,
I.
,
Vovchenko
,
L.
,
Matzui
,
L.
, and
Lazarenko
,
O.
,
2017
, “
Synergistic Enhancement of the Percolation Threshold in Hybrid Polymeric Nanocomposites Based on Carbon Nanotubes and Graphite Nanoplatelets
,”
Nanoscale Res. Lett.
,
12
(
1
), p.
140
.
46.
Maxian
,
O.
,
Pedrazzoli
,
D.
, and
Manas-Zloczower
,
I.
,
2015
, “
Modeling the Electrical Percolation Behavior of Hybrid Nanocomposites Based on Carbon Nanotubes and Graphene Nanoplatelets
,”
Mater. Res. Express
,
2
(
9
), p.
95013
.
47.
Ni
,
X.
,
Hui
,
C.
,
Su
,
N.
,
Jiang
,
W.
, and
Liu
,
F.
,
2018
, “
Monte Carlo Simulations of Electrical Percolation in Multicomponent Thin Films With Nanofillers
,”
Nanotechnology
,
29
(
7
), p.
075401
.
48.
Ni
,
X.
,
Hui
,
C.
,
Su
,
N.
,
Cutler
,
R.
, and
Liu
,
F.
,
2019
, “
A 3D Percolation Model for Multicomponent Nanocarbon Composites: The Critical Role of Nematic Transition
,”
Nanotechnology
,
30
(
18
), p.
185302
.
49.
MATLAB
,
2015
, “
Linear or Quadratic Problem-With Quadratic Constraints
,” https://www.mathworks.com/help/optim/ug/linear-or-quadratic-problem-with-quadratic-constraints.html.
50.
Gbaguidi
,
A.
,
Namilae
,
S.
, and
Kim
,
D.
,
2020
, “
Synergy Effect in Hybrid Nanocomposites Based on Carbon Nanotubes and Graphene Nanoplatelets
,”
Nanotechnology
,
31
(
25
), p.
255704
.
51.
Chen
,
P.
,
Li
,
Y.
,
Peng
,
J.
,
Gao
,
F.
, and
Li
,
Z.
,
2020
, “
An Inspired Nanoscale System to Evaluate Interfacial Behavior of Layered Structures
,”
Comput. Mater. Sci.
,
182
, p.
109793
.
52.
Yan
,
K. Y.
,
Xue
,
Q. Z.
,
Zheng
,
Q. B.
, and
Hao
,
L. Z.
,
2007
, “
The Interface Effect of the Effective Electrical Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
,
18
(
8
), p.
255705
.
53.
Lisunova
,
M. O.
,
Mamunya
,
Y. P.
,
Lebovka
,
N. I.
, and
Melezhyk
,
A. V.
,
2007
, “
Percolation Behaviour of Ultrahigh Molecular Weight Polyethylene/Multi-walled Carbon Nanotubes Composites
,”
Eur. Polym. J.
,
43
(
3
), pp.
949
958
.
54.
Zare
,
Y.
,
Rhee
,
K. Y.
, and
Park
,
S. J.
,
2019
, “
A Developed Equation for Electrical Conductivity of Polymer Carbon Nanotubes (CNT) Nanocomposites Based on Halpin-Tsai Model
,”
Results Phys.
,
14
, p.
102406
.
55.
Rommes
,
J.
, and
Schilders
,
W. H. A.
,
2010
, “
Efficient Methods for Large Resistor Networks
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
,
29
(
1
), pp.
28
39
.
56.
Simmons
,
J. G.
,
1963
, “
Generalized Formula for the Electric Tunnel Effect Between Similar Electrodes Separated by a Thin Insulating Film
,”
J. Appl. Phys.
,
34
(
6
), pp.
1793
1803
.
57.
Lee
,
B. M.
,
Loh
,
K. J.
,
Burton
,
A. R.
, and
Loyola
,
B. R.
,
2014
, “
Modeling the Electromechanical and Strain Response of Carbon Nanotube-Based Nanocomposites
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
,
Apr. 10
,
International Society for Optics and Photonics
, p.
906117
.
58.
Ambrosetti
,
G.
,
Johner
,
N.
,
Grimaldi
,
C.
,
Danani
,
A.
, and
Ryser
,
P.
,
2008
, “
Percolative Properties of Hard Oblate Ellipsoids of Revolution With a Soft Shell
,”
Phys. Rev. E
,
78
(
6
), p.
061126
.
59.
Kim
,
I. H.
, and
Jeong
,
Y. G.
,
2010
, “
Polylactide/Exfoliated Graphite Nanocomposites With Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity
,”
J. Polym. Sci., Part B: Polym. Phys.
,
48
(
6
), pp.
850
858
.
60.
Secor
,
E. B.
,
Prabhumirashi
,
P. L.
,
Puntambekar
,
K.
,
Geier
,
M. L.
, and
Hersam
,
M. C.
,
2013
, “
Inkjet Printing of High Conductivity, Flexible Graphene Patterns
,”
J. Phys. Chem. Lett.
,
4
(
8
), pp.
1347
1351
.
61.
Wu
,
H.
, and
Drzal
,
L. T.
,
2013
, “
High Thermally Conductive Graphite Nanoplatelet/Polyetherimide Composite by Precoating: Effect of Percolation and Particle Size
,”
Polym. Compos.
,
34
(
12
), pp.
2148
2153
.
62.
Hernandez
,
Y.
,
Nicolosi
,
V.
,
Lotya
,
M.
,
Blighe
,
F. M.
,
Sun
,
Z.
,
De
,
S.
,
McGovern
,
I. T.
,
Holland
,
B.
,
Byrne
,
M.
,
Gun’ko
,
Y. K.
,
Boland
,
J. J.
,
Niraj
,
P.
,
Duesberg
,
G.
,
Krishnamurthy
,
S.
,
Goodhue
,
R.
,
Hutchison
,
J.
,
Scardaci
,
V.
,
Ferrari
,
A. C.
, and
Coleman
,
J. N.
,
2008
, “
High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite
,”
Nat. Nanotechnol.
,
3
(
9
), pp.
563
568
.
63.
Kwon
,
O. S.
,
Kim
,
H.
,
Ko
,
H.
,
Lee
,
J.
,
Lee
,
B.
,
Jung
,
C. H.
,
Choi
,
J. H.
, and
Shin
,
K.
,
2013
, “
Fabrication and Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Paper
,”
Carbon
,
58
, pp.
116
127
.
64.
Chen
,
Y.
,
Li
,
C.
,
Tu
,
J. C.
, and
An
,
L. N.
,
2012
, “
Synthesis of Short Multi-walled Carbon Nanotubes by Molecular Self-assembly
,”
New Carbon Mater.
,
27
(
6
), pp.
416
420
.
65.
Soum
,
V.
,
Park
,
S.
,
Brilian
,
A. I.
,
Kim
,
Y.
,
Ryu
,
M. Y.
,
Brazell
,
T.
,
Burpo
,
F. J.
,
Parker
,
K. K.
,
Kwon
,
O. S.
, and
Shin
,
K.
,
2019
, “
Inkjet-Printed Carbon Nanotubes for Fabricating a Spoof Fingerprint on Paper
,”
ACS Omega
,
4
(
5
), pp.
8626
8631
.
66.
Zhou
,
H.
,
Han
,
G.
,
Xiao
,
Y.
,
Chang
,
Y.
, and
Zhai
,
H. J.
,
2015
, “
A Comparative Study on Long and Short Carbon Nanotubes-Incorporated Polypyrrole/Poly(Sodium 4-Styrenesulfonate) Nanocomposites as High-Performance Supercapacitor Electrodes
,”
Synth. Met.
,
209
, pp.
405
411
.
67.
Gbaguidi
,
A.
,
Madiyar
,
F.
,
Kim
,
D.
, and
Namilae
,
S.
,
2020
, “
Multifunctional Inkjet Printed Sensors for MMOD Impact Detection
,”
Smart Mater. Struct.
,
29
(
8
), p.
085052
.
68.
Gao
,
Y.
,
Picot
,
O. T.
,
Bilotti
,
E.
, and
Peijs
,
T.
,
2017
, “
Influence of Filler Size on the Properties of Poly(Lactic Acid) (PLA)/Graphene Nanoplatelet (GNP) Nanocomposites
,”
Eur. Polym. J.
,
86
, pp.
117
131
.
69.
Ravindran
,
A. R.
,
Feng
,
C.
,
Huang
,
S.
,
Wang
,
Y.
,
Zhao
,
Z.
, and
Yang
,
J.
,
2018
, “
Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites
,”
Polymers
,
10
(
5
), p.
477
.
70.
Kalaitzidou
,
K.
,
Fukushima
,
H.
, and
Drzal
,
L. T.
,
2010
, “
A Route for Polymer Nanocomposites With Engineered Electrical Conductivity and Percolation Threshold
,”
Materials
,
3
(
2
), pp.
1089
1103
.
You do not currently have access to this content.