Abstract

In this study, chromium electroplating process, corresponding hydrogen embrittlement, and the effects of baking on hydrogen diffusion are investigated. Three types of materials in the form of Raw 4340 steel, Chromium electroplated 4340 steel, and Chromium electroplated and baked 4340 steel are used in order to shed light on the aforementioned processes. Mechanical and microstructural analyses are carried out to observe the effects of hydrogen diffusion. Mechanical analyses show that the tensile strength and hardness of the specimens deteriorate after the chrome-electroplating process due to the presence of atomic hydrogen. X-ray diffraction (XRD) analyses are carried out for material characterization. Microstructural analyses reveal that hydrogen enters into the material with chromium electroplating process, and baking after chromium electroplating process is an effective way to prevent hydrogen embrittlement. Additionally, the effects of hydrogen on the tensile response of α-Fe-based microstructure with a similar chemical composition of alloying elements are simulated through molecular dynamics (MD) method.

References

1.
Nascimento
,
M. P.
,
Souza
,
R. C.
,
Pigatin
,
W. L.
, and
Voorwald
,
H. J. C.
,
2001
, “
Effects of Surface Treatments on the Fatigue Strength of AISI 4340 Aeronautical Steel
,”
Int. J. Fatigue
,
23
(
7
), pp.
607
618
.
2.
Gowthaman
,
P. S.
,
Gowthaman
,
J.
, and
Nagasundaram
,
N.
,
2020
, “
A Study of Machining Characteristics of AISI 4340 Alloy Steel by Wire Electrical Discharge Machining Process
,”
Mater. Today Proc.
,
27
(
1
), pp.
565
570
.
3.
Allen
,
Q. S.
, and
Nelson
,
T. W.
,
2019
, “
Microstructural Evaluation of Hydrogen Embrittlement and Successive Recovery in Advanced High Strength Steel
,”
J. Mater. Process. Technol.
,
265
, pp.
12
19
.
4.
Sk
,
M. H.
,
Overfelt
,
R. A.
,
Haney
,
R. L.
, and
Fergus
,
J. W.
,
2011
, “
Hydrogen Embrittlement of 4340 Steel due to Condensation During Vaporized Hydrogen Peroxide Treatment
,”
Mater. Sci. Eng. A
,
528
(
10–11
), pp.
3639
3645
.
5.
Singh
,
D. K.
,
Singh Raman
,
R. K.
,
Maiti
,
S. K.
,
Bhandakkar
,
T. K.
, and
Pal
,
S.
,
2017
, “
Investigation of Role of Alloy Microstructure in Hydrogen-Assisted Fracture of AISI 4340 Steel Using Circumferentially Notched Cylindrical Specimens
,”
Mater. Sci. Eng. A
,
698
, pp.
191
197
.
6.
Laliberté-Riverin
,
S.
,
Bellemare
,
J.
,
Sirois
,
F.
, and
Brochu
,
M.
,
2020
, “
Internal Hydrogen Embrittlement of pre-Cracked, Cadmium-Plated AISI 4340 High Strength Steel With Sustained Load Tests and Incremental Step-Loading Tests
,”
Eng. Fract. Mech.
,
223
, p.
106773
.
7.
Venezuela
,
J.
,
Lim
,
F. Y.
,
Liu
,
L.
,
James
,
S.
,
Zhou
,
Q.
,
Knibbe
,
R.
,
Zhang
,
M.
,
Li
,
H.
,
Dong
,
F.
,
Dargusch
,
M. S.
, and
Atrens
,
A.
,
2020
, “
Hydrogen Embrittlement of an Automotive 1700MPa Martensitic Advanced High-Strength Steel
,”
Corros. Sci.
,
171
, p.
108726
.
8.
khare
,
A.
,
Dwivedi
,
S. K.
,
Vishwakarma
,
M.
, and
Ahmed
,
S.
,
2018
, “
Experimental Investigation of Hydrogen Embrittlement During Coating Process and Effect on Mechanical Properties of High Strength Steel Used for Fasteners
,”
Mater. Today Proc.
,
5
(
9
), pp.
18707
18715
.
9.
Venezuela
,
J.
,
Zhou
,
Q.
,
Liu
,
Q.
,
Li
,
H.
,
Zhang
,
M.
,
Dargusch
,
M. S.
, and
Atrens
,
A.
,
2018
, “
The Influence of Microstructure on the Hydrogen Embrittlement Susceptibility of Martensitic Advanced High Strength Steels
,”
Mater. Today Commun.
,
17
, pp.
1
14
.
10.
Anand
,
L.
,
Mao
,
Y.
, and
Talamini
,
B.
,
2019
, “
On Modeling Fracture of Ferritic Steels due to Hydrogen Embrittlement
,”
J. Mech. Phys. Solids
,
122
, pp.
280
314
.
11.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2018
, “
Hydrogen Embrittlement in Different Materials: A Review
,”
Int. J. Hydrogen Energy
,
43
(
46
), pp.
21603
21616
.
12.
Bouledroua
,
O.
,
Hafsi
,
Z.
,
Djukic
,
M. B.
, and
Elaoud
,
S.
,
2020
, “
The Synergistic Effects of Hydrogen Embrittlement and Transient gas Flow Conditions on Integrity Assessment of a Precracked Steel Pipeline
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
18010
18020
.
13.
Zafra
,
A.
,
Belzunce
,
J.
,
Rodríguez
,
C.
, and
Fernández-Pariente
,
I.
,
2020
, “
Hydrogen Embrittlement of the Coarse Grain Heat Affected Zone of a Quenched and Tempered 42CrMo4 Steel
,”
Int. J. Hydrogen Energy
,
45
(
33
), pp.
16890
16908
.
14.
Martin
,
M. L.
,
Dadfarnia
,
M.
,
Nagao
,
A.
,
Wang
,
S.
, and
Sofronis
,
P.
,
2019
, “
Enumeration of the Hydrogen-Enhanced Localized Plasticity Mechanism for Hydrogen Embrittlement in Structural Materials
,”
Acta Mater.
,
165
, pp.
734
750
.
15.
Tuğluca
,
I. B.
,
Koyama
,
M.
,
Shimomura
,
Y.
,
Bal
,
B.
,
Canadinc
,
D.
,
Akiyama
,
E.
, and
Tsuzaki
,
K.
,
2019
, “
Lowering Strain Rate Simultaneously Enhances Carbon- and Hydrogen-Induced Mechanical Degradation in an Fe-33Mn-1.1C Steel
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
50
(
3
), pp.
1137
1141
.
16.
Hojo
,
T.
,
Akiyama
,
E.
,
Saitoh
,
H.
,
Shiro
,
A.
,
Yasuda
,
R.
,
Shobu
,
T.
,
Kinugasa
,
J.
, and
Yuse
,
F.
,
2020
, “
Effects of Residual Stress and Plastic Strain on Hydrogen Embrittlement of a Stretch-Formed TRIP-Aided Martensitic Steel Sheet
,”
Corros. Sci.
,
177
, p.
108957
.
17.
Cheng
,
X. Y.
, and
Zhang
,
H. X.
,
2020
, “
A New Perspective on Hydrogen Diffusion and Hydrogen Embrittlement in low-Alloy High Strength Steel
,”
Corros. Sci.
,
174
, p.
108800
.
18.
Sun
,
B.
,
Krieger
,
W.
,
Rohwerder
,
M.
,
Ponge
,
D.
, and
Raabe
,
D.
,
2020
, “
Dependence of Hydrogen Embrittlement Mechanisms on Microstructure-Driven Hydrogen Distribution in Medium Mn Steels
,”
Acta Mater.
,
183
, pp.
313
328
.
19.
Oger
,
L.
,
Malard
,
B.
,
Odemer
,
G.
,
Peguet
,
L.
, and
Blanc
,
C.
,
2019
, “
Influence of Dislocations on Hydrogen Diffusion and Trapping in an Al-Zn-Mg Aluminium Alloy
,”
Mater. Des.
,
180
, p.
107901
.
20.
Depover
,
T.
, and
Verbeken
,
K.
,
2018
, “
The Detrimental Effect of Hydrogen at Dislocations on the Hydrogen Embrittlement Susceptibility of Fe-C-X Alloys: An Experimental Proof of the HELP Mechanism
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3050
3061
.
21.
Zhang
,
W.
,
2016
, “
Evaluation of Susceptibility to Hydrogen Embrittlement—A Rising Step Load Testing Method
,”
Mater. Sci. Appl.
,
7
(
8
), pp.
389
395
.
22.
Djukic
,
M. B.
,
Bakic
,
G. M.
,
Sijacki Zeravcic
,
V.
,
Sedmak
,
A.
, and
Rajicic
,
B.
,
2019
, “
The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion
,”
Eng. Fract. Mech.
,
216
, p.
106528
.
23.
Yu
,
H.
,
Cocks
,
A.
, and
Tarleton
,
E.
,
2019
, “
Discrete Dislocation Plasticity HELPs Understand Hydrogen Effects in bcc Materials
,”
J. Mech. Phys. Solids
,
123
, pp.
41
60
.
24.
Song
,
J.
, and
Curtin
,
W. A.
,
2014
, “
Mechanisms of Hydrogen-Enhanced Localized Plasticity: An Atomistic Study Using α-Fe as a Model System
,”
Acta Mater.
,
68
, pp.
61
69
.
25.
Najam
,
H.
,
Koyama
,
M.
,
Bal
,
B.
,
Akiyama
,
E.
, and
Tsuzaki
,
K.
,
2020
, “
Strain Rate and Hydrogen Effects on Crack Growth From a Notch in a Fe-High-Mn Steel Containing 1.1 wt% Solute Carbon
,”
Int. J. Hydrogen Energy
,
45
(
1
), pp.
1125
1139
.
26.
Bal
,
B.
,
Sahin
,
I.
,
Uzun
,
A.
, and
Canadinc
,
D.
,
2016
, “
A New Venue Toward Predicting the Role of Hydrogen Embrittlement on Metallic Materials
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
47
(
11
), pp.
5409
5422
.
27.
Bal
,
B.
,
Koyama
,
M.
,
Gerstein
,
G.
,
Maier
,
H. J.
, and
Tsuzaki
,
K.
,
2016
, “
Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Twinning-Induced Plasticity Steel Pre-Charged with High-Pressure Hydrogen Gas
,”
Int. J. Hydrogen Energy
,
41
(
34
), pp.
15362
15372
.
28.
Gaude-Fugarolas
,
D.
,
2010
, “
Hydrogen Reduction During Steel Casting By Thermally Induced Up-Hill Diffusion
,”
Proceedings of METAL2010
,
Roznov pod Radhostem, Czech Republic
, Tanger Ltd.
29.
Egels
,
G.
,
Mujica Roncery
,
L.
,
Fussik
,
R.
,
Theisen
,
W.
, and
Weber
,
S.
,
2018
, “
Impact of Chemical Inhomogeneities on Local Material Properties and Hydrogen Environment Embrittlement in AISI 304L Steels
,”
Int. J. Hydrogen Energy
,
43
(
10
), pp.
5206
5216
.
30.
Georgiou
,
E. P.
,
Cevallos
,
V. P.
,
Van der Donck
,
T.
,
Drees
,
D.
,
Meersschaut
,
J.
,
Panagopoulos
,
C. N.
, and
Celis
,
J.-P.
,
2017
, “
Effect of Cathodic Hydrogen Charging on the Wear Behavior of 5754 Al Alloy
,”
Wear
,
390–391
, pp.
295
301
.
31.
Panagopoulos
,
C. N.
,
Georgiou
,
E. P.
, and
Chaliampalias
,
D.
,
2014
, “
Cathodic Hydrogen Charging of Zinc
,”
Corros. Sci.
,
79
, pp.
16
20
.
32.
Wang
,
D.
,
Lu
,
X.
,
Wan
,
D.
,
Li
,
Z.
, and
Barnoush
,
A.
,
2019
, “
In-Situ Observation of Martensitic Transformation in an Interstitial Metastable High-Entropy Alloy During Cathodic Hydrogen Charging
,”
Scr. Mater.
,
173
, pp.
56
60
.
33.
Li
,
X.
,
Zhang
,
J.
,
Wang
,
Y.
,
Li
,
B.
,
Zhang
,
P.
, and
Song
,
X.
,
2015
, “
Effect of Cathodic Hydrogen-Charging Current Density on Mechanical Properties of Prestrained High Strength Steels
,”
Mater. Sci. Eng. A
,
641
, pp.
45
53
.
34.
Reda
,
Y.
,
El-Shamy
,
A. M.
, and
Eessaa
,
A. K.
,
2018
, “
Effect of Hydrogen Embrittlement on the Microstructures of Electroplated Steel Alloy 4130
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
2973
2982
.
35.
Mehner
,
T.
,
Scharf
,
I.
,
Frint
,
P.
,
Schubert
,
F.
,
Mašek
,
B.
,
Wagner
,
M. F.-X.
, and
Lampke
,
T.
,
2019
, “
Hydrogen Embrittlement of a Quenching and Partitioning Steel During Corrosion and Zinc Electroplating
,”
Mater. Sci. Eng. A
,
744
, pp.
247
254
.
36.
Hillier
,
E. M. K.
, and
Robinson
,
M. J.
,
2004
, “
Hydrogen Embrittlement of High Strength Steel Electroplated with Zinc–Cobalt Alloys
,”
Corros. Sci.
,
46
(
3
), pp.
715
727
.
37.
Dong
,
C. F.
,
Liu
,
Z. Y.
,
Li
,
X. G.
, and
Cheng
,
Y. F.
,
2009
, “
Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking
,”
Int. J. Hydrogen Energy
,
34
(
24
), pp.
9879
9884
.
38.
Li
,
X.
,
Gong
,
B.
,
Deng
,
C.
, and
Li
,
Y.
,
2019
, “
Effect of pre-Strain on Microstructure and Hydrogen Embrittlement of K-TIG Welded Austenitic Stainless Steel
,”
Corros. Sci.
,
149
, pp.
1
17
.
39.
De Bruycker
,
E.
,
Huysmans
,
S.
, and
Vanderlinden
,
F.
,
2018
, “
Investigation of the Hydrogen Embrittlement Susceptibility of T24 Boiler Tubing in the Context of Stress Corrosion Cracking of its Welds
,”
Procedia Struct. Integr.
,
13
, pp.
226
231
.
40.
Zhang
,
T.
,
Zhao
,
W.
,
Deng
,
Q.
,
Jiang
,
W.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Jiang
,
W.
,
2017
, “
Effect of Microstructure Inhomogeneity on Hydrogen Embrittlement Susceptibility of X80 Welding HAZ Under Pressurized Gaseous Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
39
), pp.
25102
25113
.
41.
Pradhan
,
A.
,
Vishwakarma
,
M.
, and
Dwivedi
,
S. K.
,
2020
, “
A Review: The Impact of Hydrogen Embrittlement on the Fatigue Strength of High Strength Steel
,”
Mater. Today Proc.
,
26
(
2
), pp.
3015
3019
.
42.
Atrens
,
A.
,
Venezuela
,
J.
,
Liu
,
Q.
,
Zhou
,
Q.
,
Verbeken
,
K.
,
Tapia-Bastidas
,
C.
,
Gray
,
E.
,
Christien
,
F.
, and
Wolski
,
K.
,
2018
, “
Electrochemical and Mechanical Aspects of Hydrogen Embrittlement Evaluation of Martensitic Steels
,”
K.B.T.-E. of I.C. Wandelt
(Ed.),
Elsevier
,
Oxford
, pp.
201
225
.
43.
Popov
,
B. N.
,
Lee
,
J.-W.
, and
Djukic
,
M. B.
,
2018
, “Chapter 7—Hydrogen Permeation and Hydrogen-Induced Cracking,”
Handbook of Environmental Degradation of Materials
, 3rd ed.,
M.
Kutz
, ed.,
William Andrew Publishing
, pp.
133
162
.
44.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2019
, “
Effect of Hydrogen in Advanced High Strength Steel Materials
,”
Int. J. Hydrogen Energy
,
44
(
51
), pp.
28007
28030
.
45.
Araujo
,
L. S.
,
de Almeida
,
L. H.
, and
dos Santos
,
D. S.
,
2019
, “
Hydrogen Embrittlement of a Hard Chromium Plated Cylinder Assembly
,”
Eng. Failure Anal.
,
103
, pp.
259
265
.
46.
Zhang
,
P.
,
Zou
,
T.
,
Feng
,
S.
, and
Zhao
,
J.
,
2019
, “
First Principles Investigations of Hydrogen Interaction with Vacancy-Oxygen Complexes in Vanadium Alloys
,”
Int. J. Hydrogen Energy
,
44
(
48
), pp.
26637
26645
.
47.
Wang
,
Y.
,
Hu
,
S.
,
Li
,
Y.
, and
Cheng
,
G.
,
2019
, “
Improved Hydrogen Embrittlement Resistance After Quenching–Tempering Treatment for a Cr-Mo-V High Strength Steel
,”
Int. J. Hydrogen Energy
,
44
(
54
), pp.
29017
29026
.
48.
Barsanti
,
M.
,
Beghini
,
M.
,
Frasconi
,
F.
,
Ishak
,
R.
,
Monelli
,
B. D.
, and
Valentini
,
R.
,
2018
, “
Experimental Study of Hydrogen Embrittlement in Maraging Steels
,”
Procedia Struct. Integr.
,
8
, pp.
501
508
.
49.
Jo
,
K. R.
,
Cho
,
L.
,
Sulistiyo
,
D. H.
,
Seo
,
E. J.
,
Kim
,
S. W.
, and
De Cooman
,
B. C.
,
2019
, “
Effects of Al-Si Coating and Zn Coating on the Hydrogen Uptake and Embrittlement of Ultra-High Strength Press-Hardened Steel
,”
Surf. Coat. Technol.
,
374
, pp.
1108
1119
.
50.
Sk
,
M. H.
,
Overfelt
,
R. A.
, and
Abdullah
,
A. M.
,
2016
, “
Effects of Microstructures on Hydrogen Induced Cracking of Electrochemically Hydrogenated Double Notched Tensile Sample of 4340 Steel
,”
Mater. Sci. Eng. A
,
659
, pp.
242
255
.
51.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2021
, “Hydrogen Embrittlement Prevention in High Strength Steels by Application of Various Surface Coatings–A Review,”
Advances in Manufacturing and Industrial Engineering
,
Lecture Notes in Mechanical Engineering
,
Springer
,
Singapore
.
52.
Bhattacharya
,
S.
,
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2011
, “
Microstructural Evolution of AISI 4340 Steel During Direct Metal Deposition Process
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2309
2318
.
53.
Plimpton
,
S.
,
1997
, “
Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
42
.
54.
Zhou
,
X.
,
Foster
,
M. E.
,
Sills
,
R. B.
, and
Karnesky
,
R. A.
,
2019
, “
Towards Molecular Dynamics Studies of Hydrogen Effects in Fe-Cr-Ni Stainless Steels
,”
Proc. Int. Offshore Polar Eng. Conf.
,
4
, pp.
4180
4185
.
55.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
56.
Stannard
,
T. J.
,
Williams
,
J. J.
,
Singh
,
S. S.
,
Sundaram Singaravelu
,
A. S.
,
Xiao
,
X.
, and
Chawla
,
N.
,
2018
, “
3D Time-Resolved Observations of Corrosion and Corrosion-Fatigue Crack Initiation and Growth in Peak-Aged Al 7075 Using Synchrotron X-ray Tomography
,”
Corros. Sci.
,
138
, pp.
340
352
.
57.
Wang
,
Z.-Q.
,
Li
,
Y.-H.
,
Li
,
Z.-Z.
,
Zhou
,
H.-B.
, and
Lu
,
G.-H.
,
2019
, “
Investigating Behavior of Hydrogen in Zirconium by First-Principles: From Dissolution, Diffusion to the Interaction with Vacancy
,”
Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
,
458
, pp.
1
6
.
58.
Tioguem
,
F.
,
Maziere
,
M.
,
Tankoua
,
F.
,
Galtier
,
A.
, and
Gourgues-Lorenzon
,
A. F.
,
2018
, “
Identification of Ductile to Brittle Transition Temperature by Using Plane Strain Specimen in Tensile Test and Correlation with Instrumented Charpy Impact Test: Experimental and Numerical Study
,”
Mech. Ind.
,
19
(
1
), pp.
1
18
.
59.
Chen
,
W.
,
Kania
,
R.
,
Worthingham
,
R.
, and
Van Boven
,
G.
,
2009
, “
Transgranular Crack Growth in the Pipeline Steels Exposed to Near-Neutral pH Soil Aqueous Solutions: The Role of Hydrogen
,”
Acta Mater.
,
57
(
20
), pp.
6200
6214
.
60.
Mohtadi-Bonab
,
M. A.
,
Eskandari
,
M.
,
Sanayei
,
M.
, and
Das
,
S.
,
2018
, “
Microstructural Aspects of Intergranular and Transgranular Crack Propagation in an API X65 Steel Pipeline Related to Fatigue Failure
,”
Eng. Failure Anal.
,
94
, pp.
214
225
.
61.
Wang
,
S.
,
Martin
,
M. L.
,
Robertson
,
I. M.
, and
Sofronis
,
P.
,
2016
, “
Effect of Hydrogen Environment on the Separation of Fe Grain Boundaries
,”
Acta Mater.
,
107
, pp.
279
288
.
62.
Yerokhin
,
A.
,
Pilkington
,
A.
, and
Matthews
,
A.
,
2010
, “
Pulse Current Plasma Assisted Electrolytic Cleaning of AISI 4340 Steel
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
54
63
.
63.
Croccolo
,
D.
,
De Agostinis
,
M.
, and
Vincenzi
,
N.
,
2011
, “
Failure Analysis of Bolted Joints: Effect of Friction Coefficients in Torque–Preloading Relationship
,”
Eng. Failure Anal.
,
18
(
1
), pp.
364
373
.
64.
NASM1312-5 Standard Practice Fastener Test Methods Method 5 Stress Durability, Aerospace Industries Association of America
(
2011
).
65.
Ghosh
,
G.
,
Rostron
,
P.
,
Garg
,
R.
, and
Panday
,
A.
,
2018
, “
Hydrogen Induced Cracking of Pipeline and Pressure Vessel Steels: A Review
,”
Eng. Fract. Mech.
,
199
, pp.
609
618
.
66.
Hatano
,
M.
,
Tsukasaki
,
H.
,
Kawaguchi
,
A.
,
Kawaguchi
,
S.
,
Kubota
,
Y.
,
Ishii
,
Y.
, and
Mori
,
S.
,
2019
, “
Strain-Induced ɛ-Martensitic Transformation and Hydrogen Embrittlement of SUS304 Stainless Steel
,”
Philos. Mag. Lett.
,
99
(
11
), pp.
404
413
.
67.
Hao
,
C.
,
Koyama
,
M.
, and
Akiyama
,
E.
,
2020
, “
Quantitative Evaluation of Hydrogen Effects on Evolutions of Deformation-Induced ɛ-Martensite and Damage in a High-Mn Steel
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
51
(
12
), pp.
6184
6194
.
You do not currently have access to this content.