Abstract

Powder metallurgy products display superior performance compared to traditionally cast ingots. The final properties of these products can be altered through various methods, such as pre-treatment of the powder. This study focuses on different pre-treatment techniques, including milling, chemical treatment, and heat treatment, as well as their combinations. The results show that distinct microstructures were produced, and their impact on mechanical and corrosion properties was evaluated. The results indicate that milling and chemical treatment increase the yield strength of the material by up to 34 MPa but decrease the elongation by up to 5%. On the other hand, heat treatment increases the elongation by up to 7% but decreases the yield strength by up to 36 MPa. Corrosion resistance is improved especially by chemical and heat treatment of powders, where the corrosion rate was observed to decrease by up to 50% in comparison to the value of product from atomized powder. Additionally, all types of powder pre-treatment were found to improve the corrosion resistance of the final product. This provides an opportunity to tailor the mechanical and corrosion properties of these materials to meet specific applications.

References

1.
Kondoh
,
K.
,
Hamada
,
E. S. A.
,
Imai
,
H.
,
Umeda
,
J.
, and
Jones
,
T.
,
2010
, “
Microstructures and Mechanical Responses of Powder Metallurgy Non-Combustive Magnesium Extruded Alloy by Rapid Solidification Process in Mass Production
,”
Mater. Des.
,
31
(
3
), pp.
1540
1546
.
2.
Miura
,
S.
,
Imagawa
,
S.
,
Toyoda
,
T.
,
Ohkubo
,
K.
, and
Mohri
,
T.
,
2008
, “
Effect of Rare-Earth Elements Y and Dy on the Deformation Behavior of Mg Alloy Single Crystals
,”
Mater. Trans.
,
49
(
5
), pp.
952
956
.
3.
Levorova
,
J.
,
Duskova
,
J.
,
Drahos
,
M.
,
Vrbova
,
R.
,
Vojtech
,
D.
,
Kubasek
,
J.
,
Bartos
,
M.
,
Dugova
,
L.
,
Ulmann
,
D.
, and
Foltan
,
R.
,
2018
, “
In Vivo Study on Biodegradable Magnesium Alloys: Bone Healing Around WE43 Screws
,”
J. Biomater. Appl.
,
32
(
7
), pp.
886
895
.
4.
Xin
,
R. L.
,
Song
,
B.
,
Zeng
,
K.
,
Huang
,
G. J.
, and
Liu
,
Q.
,
2012
, “
Effect of Aging Precipitation on Mechanical Anisotropy of an Extruded Mg-Y-Nd Alloy
,”
Mater. Des.
,
34
, pp.
384
388
.
5.
Bohlen
,
J.
,
Yi
,
S. B.
,
Letzig
,
D.
, and
Kainer
,
K. U.
,
2010
, “
Effect of Rare Earth Elements on the Microstructure and Texture Development in Magnesium-Manganese Alloys During Extrusion
,”
Mater. Sci. Eng., A
,
527
(
26
), pp.
7092
7098
.
6.
Kubásek
,
J.
,
Dvorský
,
D.
,
Čavojský
,
M.
,
Roudnická
,
M.
, and
Vojtěch
,
D.
,
2019
, “
WE43 Magnesium Alloy—Material for Challenging Applications
,”
Kov. Mater.
,
57
(
3
), pp.
159
165
.
7.
Mengucci
,
P.
,
Barucca
,
G.
,
Riontino
,
G.
,
Lussana
,
D.
,
Massazza
,
M.
,
Ferragut
,
R.
, and
Aly
,
E. H.
,
2008
, “
Structure Evolution of a WE43 Mg Alloy Submitted to Different Thermal Treatments
,”
Mater. Sci. Eng., A
,
479
(
1
), pp.
37
44
.
8.
Qian
,
M.
,
Hildebrand
,
Z. C. G.
, and
StJohn
,
D. H.
,
2009
, “
The Loss of Dissolved Zirconium in Zirconium-Refined Magnesium Alloys After Remelting
,”
Metall. Mater. Trans. A
,
40a
(
10
), pp.
2470
2479
.
9.
Gandel
,
D. S.
,
Easton
,
M. A.
,
Gibson
,
M. A.
,
Abbott
,
T.
, and
Birbilis
,
N.
,
2013
, “
The Influence of Zirconium Additions on the Corrosion of Magnesium
,”
Corros. Sci.
,
81
, pp.
27
35
.
10.
Neubert
,
V.
,
Stulíková
,
I.
,
Smola
,
B.
,
Mordike
,
B. L.
,
Vlach
,
M.
,
Bakkar
,
A.
, and
Pelcová
,
J.
,
2007
, “
Thermal Stability and Corrosion Behaviour of Mg–Y–Nd and Mg–Tb–Nd Alloys
,”
Mater. Sci. Eng., A
,
462
(
1–2
), pp.
329
333
.
11.
Smith
,
P.
,
Kirkland
,
N. T.
, and
Birbilis
,
N.
,
2014
, “Introduction to Magnesium Biomaterials,”
Magnesium Biomaterials: Design, Testing, and Best Practice
,
S. K.
Bhatia
,
A.
Diebold
,
J.
Hu
,
K. M.
Krishnan
,
D.
Narducci
,
S. S.
Ray
, and
G.
Wilde
, eds.,
Springer Cham
,
Midtown Manhattan, New York City
, pp.
1
12
.
12.
Liu
,
M.
,
Schmutz
,
P.
,
Uggowitzer
,
P. J.
,
Song
,
G.
, and
Atrens
,
A.
,
2010
, “
The Influence of Yttrium (Y) on the Corrosion of Mg–Y Binary Alloys
,”
Corros. Sci.
,
52
(
11
), pp.
3687
3701
.
13.
Yao
,
H. B.
,
Li
,
Y.
, and
Wee
,
A. T. S.
,
2003
, “
Passivity Behavior of Melt-Spun Mg–Y Alloys
,”
Electrochim. Acta
,
48
(
28
), pp.
4197
4204
.
14.
Hänzi
,
A.
,
Gunde
,
P.
,
Schinhammer
,
M.
, and
Uggowitzer
,
P.
,
2009
, “
On the Biodegradation Performance of an Mg–Y–RE Alloy With Various Surface Conditions in Simulated Body Fluid
,”
Acta Biomater.
,
5
(
1
), pp.
162
171
.
15.
Waizy
,
H.
,
Seitz
,
J. M.
,
Reifenrath
,
J.
,
Weizbauer
,
A.
,
Bach
,
F. W.
,
Meyer-Lindenberg
,
A.
,
Denkena
,
B.
, and
Windhagen
,
H.
,
2013
, “
Biodegradable Magnesium Implants for Orthopedic Applications
,”
J. Mater. Sci.
,
48
(
1
), pp.
39
50
.
16.
Liu
,
C.
,
Ren
,
Z.
,
Xu
,
Y.
,
Pang
,
S.
,
Zhao
,
X.
, and
Zhao
,
Y.
,
2018
, “
Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review
,”
Scanning
,
2018
, p.
15
.
17.
Ye
,
C.-H.
,
Xi
,
T.-F.
,
Zheng
,
Y.-F.
,
Wang
,
S.-Q.
, and
Li
,
Y.-D.
,
2013
, “
In Vitro Corrosion and Biocompatibility of Phosphating Modified WE43 Magnesium Alloy
,”
Trans. Nonferr. Metal. Soc.
,
23
(
4
), pp.
996
1001
.
18.
Jablonska
,
E.
,
Kubasek
,
J.
,
Schwarz
,
M.
,
Lipov
,
J.
,
Vojtech
,
D.
, and
Ruml
,
T.
,
2013
, “
The In Vitro Effect of Alloying Elements Used in Biodegradable Magnesium Implants on Eukaryotic Cell Metabolism
,”
Metal 2013: 22nd International Conference on Metallurgy and Materials
,
Brno, Czech Republic
,
May 15–17
, pp.
1486
1490
.
19.
Waizy
,
H.
,
Diekmann
,
J.
,
Weizbauer
,
A.
,
Reifenrath
,
J.
,
Bartsch
,
I.
,
Neubert
,
V.
,
Schavan
,
R.
, and
Windhagen
,
H.
,
2014
, “
In Vivo Study of a Biodegradable Orthopedic Screw (MgYREZr-Alloy) in a Rabbit Model for up to 12 Months
,”
J. Biomater. Appl.
,
28
(
5
), pp.
667
675
.
20.
Wu
,
G. S.
,
Ibrahim
,
J. M.
, and
Chu
,
P. K.
,
2013
, “
Surface Design of Biodegradable Magnesium Alloys—A Review
,”
Surf. Coat. Technol.
,
233
, pp.
2
12
.
21.
Weber
,
C. M.
,
Eifler
,
R.
,
Seitz
,
J.-M.
,
Maier
,
H. J.
,
Reifenrath
,
J.
,
Lenarz
,
T.
, and
Durisin
,
M.
,
2015
, “
Biocompatibility of MgF2-Coated MgNd2 Specimens in Contact With Mucosa of the Nasal Sinus—A Long Term Study
,”
Acta Biomater.
,
18
, pp.
249
261
.
22.
Li
,
Z.
,
Shizhao
,
S.
,
Chen
,
M.
,
Fahlman
,
B. D.
,
Debao Liu
, and
Bi
,
H.
,
2017
, “
In Vitro and In Vivo Corrosion, Mechanical Properties and Biocompatibility Evaluation of MgF2-Coated Mg-Zn-Zr Alloy as Cancellous Screws
,”
Mater. Sci. Eng.: C
,
75
, pp.
1268
1280
.
23.
Dvorsky
,
D.
,
Kubasek
,
J.
,
Jablonska
,
E.
,
Kaufmanova
,
J.
, and
Vojtech
,
D.
,
2020
, “
Mechanical, Corrosion and Biological Properties of Advanced Biodegradable Mg-MgF2 and WE43-MgF2 Composite Materials Prepared by Spark Plasma Sintering
,”
J. Alloys Compd.
,
825
, p.
154016
.
24.
Dvorsky
,
D.
,
Kubasek
,
J.
,
Hosova
,
K.
,
Cavojsky
,
M.
, and
Vojtech
,
D.
,
2021
, “
Microstructure, Mechanical, Corrosion, and Ignition Properties of WE43 Alloy Prepared by Different Processes
,”
Metals
,
11
(
5
), p.
18
.
25.
Jiang
,
H. S.
,
Zheng
,
M. Y.
,
Qiao
,
X. G.
,
Wu
,
K.
,
Peng
,
Q. Y.
,
Yang
,
S. H.
,
Yuan
,
Y. H.
, and
Luo
,
J. H.
, 2016, “
Microstructure and Mechanical Properties of WE43 Magnesium Alloy Fabricated by Direct-Chill Casting
,”
Mater. Sci. Eng.: A
,
684
, pp.
158
164
.
26.
Asqardoust
,
S.
,
Zarei Hanzaki
,
A.
,
Abedi
,
H. R.
,
Krajnak
,
T.
, and
Minárik
,
P.
,
2017
, “
Enhancing the Strength and Ductility in Accumulative Back Extruded WE43 Magnesium Alloy Through Achieving Bimodal Grain Size Distribution and Texture Weakening
,”
Mater. Sci. Eng.: A
,
698
, pp.
218
229
.
27.
Kubásek
,
J.
,
Dvorský
,
D.
,
Čavojský
,
M.
,
Vojtěch
,
D.
,
Beronská
,
N.
, and
Fousová
,
M.
,
2016
, “
Superior Properties of Mg–4Y–3RE–Zr Alloy Prepared by Powder Metallurgy
,”
J. Mater. Sci. Technol.
,
33
(
7
), pp.
652
660
.
28.
Willbold
,
E.
,
Kalla
,
K.
,
Bartsch
,
I.
,
Bobe
,
K.
,
Brauneis
,
M.
,
Remennik
,
S.
,
Shechtman
,
D.
, et al
,
2013
, “
Biocompatibility of Rapidly Solidified Magnesium Alloy RS66 as a Temporary Biodegradable Metal
,”
Acta Biomater.
,
9
(
10
), pp.
8509
8517
.
29.
Izumi
,
S.
,
Yamasaki
,
M.
, and
Kawamura
,
Y.
,
2008
, “
Relation Between Corrosion Behavior and Microstructure of Mg–Zn–Y Alloys Prepared by Rapid Solidification at Various Cooling Rates
,”
Corros. Sci.
,
51
(
2
), pp.
395
402
.
30.
Lagutkin
,
S.
,
Achelis
,
L.
,
Sheikhaliev
,
S.
,
Uhlenwinkel
,
V.
, and
Srivastava
,
V.
,
2004
, “
Atomization Process for Metal Powder
,”
Mater. Sci. Eng.: A
,
383
(
1
), pp.
1
6
.
31.
Dvorský
,
D.
,
Kubásek
,
J.
,
Roudnická
,
M.
,
Průša
,
F.
,
Nečas
,
D.
,
Minárik
,
P.
,
Stráská
,
J.
, and
Vojtěch
,
D.
,
2020
, “
The Effect of Powder Size on the Mechanical and Corrosion Properties and the Ignition Temperature of WE43 Alloy Prepared by Spark Plasma Sintering
,”
J. Magnes. Alloy
,
9
(
4
), pp.
1349
1362
.
32.
Dvorský
,
D.
,
Kubásek
,
J.
,
Vojtěch
,
D.
, and
Čavojský
,
M.
,
2008
, “
Advanced Mechanical and Corrosion Properties of We43 Alloy Prepared by Powder Metallurgy
,”
Acta Phys. Pol., A
,
134
(
3
), pp.
748
752
.
33.
Hao
,
L.
,
Lu
,
Y.
,
Sato
,
H.
,
Asanuma
,
H.
, and
Guo
,
J.
,
2013
, “
Analysis on Energy Transfer During Mechanical Coating and Ball Milling-Supported by Electric Power Measurement in Planetary Ball Mill
,”
Int. J. Miner. Process.
,
121
(
0
), pp.
51
58
.
34.
Guo
,
Y. B.
, and
Salahshoor
,
M.
,
2010
, “
Process Mechanics and Surface Integrity by High-Speed Dry Milling of Biodegradable Magnesium–Calcium Implant Alloys
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
151
154
.
35.
Müller
,
L.
, and
Müller
,
F. A.
,
2005
, “
Preparation of SBF With Different HCO3-Content and Its Influence on the Composition of Biomimetic Apatites
,”
Acta Biomater.
,
2
(
2
), pp.
181
189
.
36.
Nie
,
J. F.
, and
Muddle
,
B. C.
,
2000
, “
Characterisation of Strengthening Precipitate Phases in a Mg–Y–Nd Alloy
,”
Acta Mater.
,
48
(
8
), pp.
1691
1703
.
37.
Minárik
,
P.
,
Zemková
,
M.
,
Lukáč
,
F.
,
Bohlen
,
J.
,
Knapek
,
M.
, and
Král
,
R.
,
2019
, “
Microstructure of the Novel Biomedical Mg–4Y–3Nd Alloy Prepared by Spark Plasma Sintering
,”
J. Alloys Compd.
,
819
, p.
153008
.
38.
Javier
,
T.
,
Gurutze
,
A.
,
Iñigo
,
M.
,
Iñaki
,
H.
, and
Eneko Sáenz de
,
A.
,
2013
, “
Effectivity of Fluoride Treatment on Hydrogen and Corrosion Product Generation in Temporal Implants for Different Magnesium Alloys
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
227
(
12
), pp.
1301
1311
.
39.
Höhlinger
,
M.
,
Heise
,
S.
,
Wagener
,
V.
,
Boccaccini
,
A. R.
, and
Virtanen
,
S.
,
2017
, “
Developing Surface Pre-Treatments for Electrophoretic Deposition of Biofunctional Chitosan-Bioactive Glass Coatings on a WE43 Magnesium Alloy
,”
Appl. Surf. Sci.
,
405
, pp.
441
448
.
40.
Dvorsky
,
D.
,
Kubasek
,
J.
, and
Vojtech
,
D.
,
2017
, “
Corrosion Protection of WE43 Magnesium Alloy by Fluoride Conversion Coating
,”
Manuf. Technol.
,
17
(
4
), pp.
440
446
.
41.
Kubasek
,
J.
,
Minarik
,
P.
,
Hosova
,
K.
,
Sasek
,
S.
,
Knapek
,
M.
,
Vesely
,
J.
,
Straska
,
J.
,
Dvorsky
,
D.
,
Cavojsky
,
M.
, and
Vojtech
,
D.
,
2021
, “
Novel Magnesium Alloy Containing Y, Gd and Ca With Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications
,”
J. Alloys Compd.
,
877
, p.
10
.
42.
Antion
,
C.
,
Donnadieu
,
P.
,
Perrard
,
F.
,
Deschamps
,
A.
,
Tassin
,
C.
, and
Pisch
,
A.
,
2003
, “
Hardening Precipitation in a Mg-4Y-3RE Alloy
,”
Acta Mater.
,
51
(
18
), pp.
5335
5348
.
43.
Apps
,
P. J.
,
Karimzadeh
,
H.
,
King
,
J. F.
, and
Lorimer
,
G. W.
,
2003
, “
Phase Compositions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium
,”
Scr. Mater.
,
48
(
5
), pp.
475
481
.
44.
Smola
,
B.
, and
Stulı´ková
,
I.
,
2004
, “
Equilibrium and Transient Phases in Mg–Y–Nd Ternary Alloys
,”
J. Alloys Compd.
,
381
(
1
), pp.
L1
L2
.
45.
Agarwal
,
S.
,
Curtin
,
J.
,
Duffy
,
B.
, and
Jaiswal
,
S.
,
2016
, “
Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications
,”
Mater. Sci. Eng.: C
,
68
, pp.
948
963
.
46.
Stanford
,
N.
,
Marceau
,
R. K. W.
, and
Barnett
,
M. R.
,
2014
, “
The Effect of High Yttrium Solute Concentration on the Twinning Behaviour of Magnesium Alloys
,”
Acta Mater.
,
82
, pp.
447
456
.
47.
Kleiner
,
S.
, and
Uggowitzer
,
P. J.
,
2004
, “
Mechanical Anisotropy of Extruded Mg–6% Al–1% Zn Alloy
,”
Mater. Sci. Eng.: A
,
379
(
1
), pp.
258
263
.
48.
Jiang
,
M. G.
,
Yan
,
H.
, and
Chen
,
R. S.
,
2015
, “
Twinning, Recrystallization and Texture Development During Multi-directional Impact Forging in an AZ61 Mg Alloy
,”
J. Alloys Compd.
,
650
, pp.
399
409
.
49.
Jiang
,
M. G.
,
Xu
,
C.
,
Nakata
,
T.
,
Yan
,
H.
,
Chen
,
R. S.
, and
Kamado
,
S.
,
2016
, “
Rare Earth Texture and Improved Ductility in a Mg-Zn-Gd Alloy After High-Speed Extrusion
,”
Mater. Sci. Eng.: A
,
667
, pp.
233
239
.
50.
Stanford
,
N.
, and
Barnett
,
M. R.
,
2008
, “
The Origin of “Rare Earth” Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility
,”
Mater. Sci. Eng.: A
,
496
(
1–2
), pp.
399
408
.
51.
Luo
,
A. A.
,
Mishra
,
R. K.
, and
Sachdev
,
A. K.
,
2010
, “
High-Ductility Magnesium–Zinc–Cerium Extrusion Alloys
,”
Scr. Mater.
,
64
(
5
), pp.
410
413
.
52.
Wang
,
H.-Y.
,
Yu
,
Z.-P.
,
Zhang
,
L.
,
Liu
,
C.-G.
,
Zha
,
M.
,
Wang
,
C.
, and
Jiang
,
Q.-C.
,
2015
, “
Achieving High Strength and High Ductility in Magnesium Alloy Using Hard-Plate Rolling (HPR) Process
,”
Sci. Rep.
,
5
(
1
), pp.
17100
17100
.
53.
Hama
,
T.
,
Kariyazaki
,
Y.
,
Hosokawa
,
N.
,
Fujimoto
,
H.
, and
Takuda
,
H.
,
2012
, “
Work-Hardening Behaviors of Magnesium Alloy Sheet During In-Plane Cyclic Loading
,”
Mater. Sci. Eng.: A
,
551
, pp.
209
217
.
54.
Sun
,
W.
,
Wu
,
B.
,
Fu
,
H.
,
Yang
,
X.-S.
,
Qiao
,
X.
,
Zheng
,
M.
,
He
,
Y.
,
Lu
,
J.
, and
Shi
,
S.-Q.
,
2021
, “
Combining Gradient Structure and Supersaturated Solid Solution to Achieve Superior Mechanical Properties in WE43 Magnesium Alloy
,”
J. Mater. Sci. Technol.
,
99
, pp.
223
238
.
55.
Shi
,
Q.
,
Wang
,
C.
,
Deng
,
K.
,
Nie
,
K.
,
Cao
,
M.
,
Gan
,
W.
, and
Liang
,
W.
,
2019
, “
Work Hardening and Softening Behavior of Pure Mg Influenced by Zn Addition Investigated Via In-Situ Neutron Diffraction
,”
Mater. Sci. Eng.: A
,
772
, p.
138827
.
56.
Zhang
,
D.
,
Zhang
,
D.
,
Bu
,
F.
,
Li
,
X.
,
Li
,
B.
,
Yan
,
T.
,
Guan
,
K.
,
Yang
,
Q.
,
Liu
,
X.
, and
Meng
,
J.
,
2017
, “
Excellent Ductility and Strong Work Hardening Effect of As-Cast Mg-Zn-Zr-Yb Alloy at Room Temperature
,”
J. Alloys Compd.
,
728
, pp.
404
412
.
57.
Zhang
,
X.
,
Yuan
,
G.
,
Mao
,
L.
,
Niu
,
J.
, and
Ding
,
W.
,
2011
, “
Biocorrosion Properties of as-Extruded Mg–Nd–Zn–Zr Alloy Compared With Commercial AZ31 and WE43 Alloys
,”
Mater. Lett.
,
66
(
1
), pp.
209
211
.
58.
Xu
,
X.
,
Chen
,
X.
,
Du
,
W.
,
Geng
,
Y.
, and
Pan
,
F.
,
2017
, “
Effect of Nd on Microstructure and Mechanical Properties of As-Extruded Mg-Y-Zr-Nd Alloy
,”
J. Mater. Sci. Technol.
,
33
(
9
), pp.
926
934
.
59.
Zumdick
,
N. A.
,
Jauer
,
L.
,
Kersting
,
L. C.
,
Kutz
,
T. N.
,
Schleifenbaum
,
J. H.
, and
Zander
,
D.
,
2018
, “
Additive Manufactured WE43 Magnesium: A Comparative Study of the Microstructure and Mechanical Properties With Those of Powder Extruded and As-Cast WE43
,”
Mater. Charact.
,
147
, pp.
384
397
.
60.
Zhou
,
X.
,
Jiang
,
L.
,
Wu
,
P.
,
Sun
,
Y.
,
Yu
,
Y.
,
Wei
,
G.
, and
Ge
,
H.
,
2014
, “
Effect of Aggressive Ions on Degradation of WE43 Magnesium Alloy in Physiological Environment
,”
Int. J. Electrochem. Sci.
,
9
(
1
), pp.
304
314
.
61.
Kang
,
Y. H.
,
Wu
,
D.
,
Chen
,
R. S.
, and
Han
,
E. H.
,
2014
, “
Microstructures and Mechanical Properties of the Age Hardened Mg–4.2Y–2.5Nd–1Gd–0.6Zr (WE43) Microalloyed With Zn
,”
J. Magn. Alloy
,
2
(
2
), pp.
109
115
.
62.
Ezechieli
,
M.
,
Ettinger
,
M.
,
König
,
C.
,
Weizbauer
,
A.
,
Helmecke
,
P.
,
Schavan
,
R.
,
Lucas
,
A.
,
Windhagen
,
H.
, and
Becher
,
C.
,
2016
, “
Biomechanical Characteristics of Bioabsorbable Magnesium-Based (MgYREZr-Alloy) Interference Screws With Different Threads
,”
Knee Surgery, Sports Traumatol., Arthrosc.
,
24
(
12
), pp.
1
6
.
63.
Ben-Hamu
,
G.
,
Eliezer
,
D.
,
Shin
,
K. S.
, and
Cohen
,
S.
,
2007
, “
The Relation Between Microstructure and Corrosion Behavior of Mg-Y-RE-Zr Alloys
,”
J. Alloys Compd.
,
431
(
1–2
), pp.
269
276
.
64.
Tan
,
L.
,
Yu
,
X.
,
Wan
,
P.
, and
Yang
,
K.
,
2013
, “
Biodegradable Materials for Bone Repairs: A Review
,”
J. Mater. Sci. Technol.
,
29
(
6
), pp.
503
513
.
65.
Birbilis
,
N.
,
Easton
,
M. A.
,
Sudholz
,
A. D.
,
Zhu
,
S. M.
, and
Gibson
,
M. A.
,
2008
, “
On the Corrosion of Binary Magnesium-Rare Earth Alloys
,”
Corros. Sci.
,
51
(
3
), pp.
683
689
.
66.
Li
,
N.
,
Guo
,
C.
,
Wu
,
Y. H.
,
Zheng
,
Y. F.
, and
Ruan
,
L. Q.
,
2012
, “
Comparative Study on Corrosion Behaviour of Pure Mg and WE43 Alloy in Static, Stirring and Flowing Hank´s Solution
,”
Corros. Eng. Sci. Technol.
,
47
(
5
), pp.
346
351
.
67.
Liu
,
D.
,
Ding
,
Y.
,
Guo
,
T.
,
Qin
,
X.
,
Guo
,
C.
,
Yu
,
S.
, and
Lin
,
S.
,
2014
, “
Influence of Fine-Grain and Solid-Solution Strengthening on Mechanical Properties and In Vitro Degradation of WE43 Alloy
,”
Biomed. Mater.
,
9
(
1
), p.
015014
.
You do not currently have access to this content.