Abstract

Herein, to address the issue of decreased tensile and fatigue performances observed in 300M steel scratched parts after laser-cladding repairing, an ultrasonic surface rolling process (USRP) was employed to enhance the strength of the laser-cladding-repaired (LCR) samples. Results indicated that USRP led to the formation of a strengthening layer on the surface of the samples. In the parent material area, the thickness of the strengthening layer was 180 μm, while in the cladding area, it was 35 μm. The superficial microhardness increased by 11.6% in the parent material area and by 5.0% in the cladding area. Furthermore, the surface residual stress transitioned from tensile to compressive stress, reaching a maximum of 1169.9 MPa. Improvements were observed in the tensile performance, as evidenced by a reduction in the length of the tearing ridge in the fracture morphology. In addition, the fatigue life considerably increased, initially increasing and then decreasing as the number of rolling passes increased. After four cycles of USRP, the fatigue life of the samples was the highest, which was about 18.4 times that of an unprocessed sample. The origin location of cracks shifted from the surface to the interior of the samples. This shift was accompanied by a decrease in the instantaneous fracture area and the emergence of additional secondary cracks. These experimental results demonstrate that USRP is an effective technique for improving the tensile and fatigue performances of LCR 300M steel samples.

References

1.
Ma
,
Y. F.
,
Xiong
,
Y.
,
Chen
,
Z. G.
,
Zha
,
X. Q.
,
He
,
T. T.
,
Li
,
Y.
,
Pallaspuro
,
S.
,
Wang
,
S. B.
,
Huttula
,
M.
, and
Cao
,
W.
,
2022
, “
Effect of Surface Nanocrystallization Produced by Laser Shock Processing on the Corrosion Fatigue Behavior of 300M Steel
,”
Surf. Coat. Technol.
,
439
, p.
11
.
2.
Liu
,
J.
,
Li
,
J.
,
Cheng
,
X.
, and
Wang
,
H.
,
2017
, “
Effect of Dilution and Macrosegregation on Corrosion Resistance of Laser Clad AerMet100 Steel Coating on 300M Steel Substrate
,”
Surf. Coat. Technol.
,
325
, pp.
352
359
.
3.
Liu
,
Q. C.
,
Zhuang
,
W.
, and
Sharp
,
P. K.
,
2014
, “
Fatigue Life Improvement of Laser Clad 7075 Aluminium Alloy by Deep Surface Rolling Technique
,”
Adv. Mater. Res.
,
891–892
, pp.
115
120
. www.scientific.net/AMR.891-892.115
4.
Da Sun
,
S.
,
Fabijanic
,
D.
,
Barr
,
C.
,
Liu
,
Q.
,
Walker
,
K.
,
Matthews
,
N.
,
Orchowski
,
N.
,
Easton
,
M.
, and
Brandt
,
M.
,
2018
, “
In-Situ Quench and Tempering for Microstructure Control and Enhanced Mechanical Properties of Laser Cladded AISI 420 Stainless Steel Powder on 300M Steel Substrates
,”
Surf. Coat. Technol.
,
333
, pp.
210
219
.
5.
Walker
,
K. F.
,
Lourenço
,
J. M.
,
Sun
,
S.
,
Brandt
,
M.
, and
Wang
,
C. H.
,
2017
, “
Quantitative Fractography and Modelling of Fatigue Crack Propagation in High Strength AerMet100 Steel Repaired With a Laser Cladding Process
,”
Int. J. Fatigue
,
94
(
pt.2
), pp.
288
301
.
6.
Xiao
,
P.
,
Gao
,
J. W.
,
Liu
,
L. G.
, and
Han
,
J.
,
2022
, “
Microstructure and Strength Evaluation of EA4 T Axle Steel Repaired by Laser-Cladding
,”
Mater. Rev.
,
36
(
7
), pp.
115
121
.
7.
Zhang
,
Z. Q.
,
Hu
,
J. Q.
,
Cheng
,
Z. H.
, and
Liu
,
S. H.
,
2023
, “
A Comparative Study on Laser Cladding Two High-Strength Steel Powders on Surface of 30CrMnSiNi2A Steel
,”
Hot Work Technol.
,
52
(
07
), pp.
37
40+45
.
8.
Zhu
,
J. S.
,
2020
, “
Microstructure and Properties of Laser Cladding 316L Stainless Steel Coating Enhanced by Ultrasonic Surface Rolling
,”
Master's Thesis
, Nanchang University, Nanchang, Jiangxi Province, China.
9.
Sun
,
S. D.
,
Liu
,
Q.
,
Brandt
,
M.
,
Luzin
,
V.
,
Cottam
,
R.
,
Janardhana
,
M.
, and
Clark
,
G.
,
2014
, “
Effect of Laser Clad Repair on the Fatigue Behaviour of Ultra-High Strength AISI 4340 Steel
,”
Mater. Sci. Eng. A
,
606
(
Jun.
), pp.
46
57
.
10.
Dang
,
J.
,
Zhang
,
H.
,
An
,
Q.
,
Lian
,
G.
,
Li
,
Y.
,
Wang
,
H.
, and
Chen
,
M.
,
2021
, “
Surface Integrity and Wear Behavior of 300M Steel Subjected to Ultrasonic Surface Rolling Process
,”
Surf. Coat. Technol.
,
421
, p.
127380
.
11.
Dang
,
J.
,
An
,
Q.
,
Lian
,
G.
,
Zuo
,
Z.
,
Li
,
Y.
,
Wang
,
H.
, and
Chen
,
M.
,
2021
, “
Surface Modification and Its Effect on the Tensile and Fatigue Properties of 300M Steel Subjected to Ultrasonic Surface Rolling Process
,”
Surf. Coat. Technol.
,
422
, p.
127566
.
12.
Zheng
,
K. K.
,
Lin
,
Y. X.
,
Cai
,
J. G.
, and
Lei
,
C. Q.
,
2022
, “
Corrosion Resistance and Tribological Properties of Laser Cladding Layer of H13 Die Steel Strengthened by Ultrasonic Rolling
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
137
.
13.
Ye
,
K.
,
2021
, “
Influence of Post-Treatment Process on the Microstructure and Properties of Selective Laser Melted TC4 Titanium Alloy
,”
Master's Thesis
, Nanchang University, Nanchang, Jiangxi Province, China.
14.
Yan
,
S.
,
Lu
,
H.
,
Pan
,
C.
,
Tan
,
E.
, and
Wu
,
S.
,
2021
, “
An Experimental Study on the Laser Cladding Process for Refurbishing Shafts
,”
Mater. Prot.
,
54
(
2
), pp.
86
92
.
15.
Gong
,
L. C.
,
Pan
,
Y. Z.
,
Peng
,
C.
,
Fu
,
X. L.
,
Jiang
,
Z. F.
, and
Jiang
,
S.
,
2022
, “
Effect of Ultrasonic Surface Rolling Processing on Wear Properties of Cr12MoV Steel
,”
Mater. Today Commun.
,
33
, p.
11
.
16.
Li
,
G.
,
Qu
,
S. G.
,
Xie
,
M. X.
, and
Li
,
X. Q.
,
2017
, “
Effect of Ultrasonic Surface Rolling at Low Temperatures on Surface Layer Microstructure and Properties of HIP Ti-6Al-4V Alloy
,”
Surf. Coat. Technol.
,
316
, pp.
75
84
.
17.
Cui
,
J.
,
Xue
,
A.
,
Liu
,
L.
,
Xia
,
H.
, and
Yang
,
G.
,
2021
, “
Microstructure and Electrochemical Properties of Laser Cladding C276 Coating on 300M Steel
,”
J. Aeronaut. Mater.
,
41
(
5
), pp.
86
93
.
18.
Pang
,
X.
,
Yao
,
C.
,
Gong
,
Q.
,
Wang
,
Z.
, and
Li
,
Z.
,
2021
, “
Effect of Multi-Layer Laser Cladding on Microstructure and Properties of 30CrMnSiNi2A High Strength Steel
,”
China Laser
,
48
(
06
), pp.
75
85
.
19.
Ji
,
H.
,
Hao
,
J.
,
Niu
,
Q.
,
Liu
,
H.
,
Yang
,
H.
, and
Liu
,
X.
,
2023
, “
Effect of Ultrasonic Rolling on Microstructure and Mechanical Properties of GH5188 High-Temperature Alloy Coating by High-Speed Laser Cladding
,”
J. Netshape Form. Eng.
,
15
(
01
), pp.
146
155
.
20.
Zhang
,
H.
,
Cai
,
Z.
,
Chi
,
J.
,
Sun
,
R.
,
Che
,
Z.
,
Zhang
,
H.
, and
Guo
,
W.
,
2021
, “
Fatigue Crack Growth in Residual Stress Fields of Laser Shock Peened Ti6Al4V Titanium Alloy
,”
J. Alloys Compd.
,
887
, p.
161427
.
21.
Kang
,
W.
,
He
,
B.
, and
Yu
,
Y.
,
2016
, “
Effect of Ultrasonic Impact on Surface Microstructures and Mechanical Properties of MB8 Magnesium Alloy Welded Joint
,”
Chin. J. Nonferrous Met.
,
26
(
12
), pp.
2479
2487
.
22.
Sharma
,
C.
,
Dwivedi
,
D. K.
, and
Kumar
,
P.
,
2012
, “
Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of AA7039 Aluminum Alloy
,”
Mater. Des.
,
36
(
Apr.
), pp.
379
390
.
23.
Hu
,
Y.
,
Wu
,
S.
,
Withers
,
P. J.
,
Cao
,
H.
,
Chen
,
P.
,
Zhang
,
Y.
,
Shen
,
Z.
,
Vojtek
,
T.
, and
Huta
,
P.
,
2021
, “
Corrosion Fatigue Life Assessment of High-Speed Railway EA4 T Steel With Artificial Scratches
,”
Eng. Fract. Mech.
,
245
, p.
107588
.
24.
Chew
,
Y.
,
Pang
,
J. H. L.
,
Bi
,
G.
, and
Song
,
B.
,
2017
, “
Effects of Laser Cladding on Fatigue Performance of AISI 4340 Steel in the As-Clad and Machine Treated Conditions
,”
J. Mater. Process. Technol.
,
243
, pp.
246
257
.
25.
Zhang
,
Q. K.
,
Wang
,
X. M.
, and
Song
,
Z. L.
,
2021
, “
Effects of Thin Cladding Layer and Annealing Treatments on Mechanical Properties of AISI4340 Steel
,”
Eng. Fract. Mech.
,
256
, p.
107997
.
26.
Zou
,
J. H.
,
Liang
,
Y. L.
,
Jiang
,
Y.
,
Yin
,
C. H.
,
Huang
,
C. W.
,
Liu
,
D.
,
Zhu
,
Z. L.
, and
Wu
,
Y. Z.
,
2023
, “
Fretting Fatigue Mechanism of 40CrNiMoA Steel Subjected to the Ultrasonic Surface Rolling Process: The Role of the Gradient Structure
,”
Int. J. Fatigue
,
167
(
Part A
), p.
15
.
27.
Calvo-García
,
E.
,
Valverde-Pérez
,
S.
,
Riveiro
,
A.
,
Alvarez
,
D.
,
Román
,
M.
,
Magdalena
,
C.
,
Badaoui
,
A.
,
Moreira
,
P.
, and
Comesaña
,
R.
,
2022
, “
An Experimental Analysis of the High-Cycle Fatigue Fracture of H13 Hot Forging Tool Steels
,”
Materials
,
15
(
21
), p.
20
.
28.
Ding
,
X.
,
Yan
,
X. J.
,
Guo
,
Z. X.
, and
Guo
,
K. M.
,
2022
, “
A Combined Low- and High-Cycle Life Prediction Model Considering the Closure Effect of Micro-Defects
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
7
), pp.
2058
2071
.
You do not currently have access to this content.