Graphical Abstract Figure

Graphical abstract illustrating the experiments and machine learning models used to predict the hot deformation flow stress of sintered Al–Zn–Mg alloy

Graphical Abstract Figure

Graphical abstract illustrating the experiments and machine learning models used to predict the hot deformation flow stress of sintered Al–Zn–Mg alloy

Close modal

Abstract

In predicting flow stress, machine learning (ML) offers significant advantages by leveraging data-driven approaches, enhancing material design, and accurately forecasting material performance. Thus, the present study employs various supervised ML models, including linear regression (Lasso and Ridge), support vector regression (SVR), ensemble methods (random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB)), and neural networks (artificial neural network (ANN), multilayer perceptron (MLP)), to predict flow stress in the hot deformation of an Al–Zn–Mg alloy. The ML methodology involves sequential steps from data extraction to cross-validation and hyperparameter tuning, which is conducted using the hyperopt library. Model performance is assessed using average absolute relative error (AARE), root-mean-squared error (RMSE), and mean squared error (MSE). The results show that ensemble methods (RF, GB, XGB) and neural networks outperform traditional regression methods, demonstrating superior predictive accuracy. Visualization using half-violin plots reveals the models' error ranges, with XGB consistently exhibiting the best performance. SVR, RF, GB, XGB, ANN, and MLP showed better performance than the Arrhenius model in the context of AARE and MSE metrics. Interestingly, SVR had a somewhat higher AARE of 1.89% and an MSE of 0.251 MPa2, while XGB had the lowest AARE of 0.2% and the lowest MSE of 0.011 MPa2. When ML models were evaluated using the skill score in relation to the Arrhenius model, XGB scored higher than the support vector machine (SVM) at 0.714, with a score of 0.986. In contrast, Lasso and Ridge exhibited negative scores of −0.847 and −0.456, respectively.

References

1.
Scharifi
,
E.
,
Sajadifar
,
S. V.
,
Moeini
,
G.
,
Weidig
,
U.
,
Böhm
,
S.
,
Niendorf
,
T.
, and
Steinhoff
,
K.
,
2020
, “
Dynamic Tensile Deformation of High Strength Aluminum Alloys Processed Following Novel Thermomechanical Treatment Strategies
,”
Adv. Eng. Mater.
,
22
(
8
).
2.
Hirsch
,
J.
,
2014
, “
Recent Development in Aluminium for Automotive Applications
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
1995
2002
.
3.
Li
,
L. T.
,
Lin
,
Y. C.
,
Zhou
,
H. M.
, and
Jiang
,
Y. Q.
,
2013
, “
Modeling the High-Temperature Creep Behaviors of 7075 and 2124 Aluminum Alloys by Continuum Damage Mechanics Model
,”
Comput. Mater. Sci.
,
73
(
2013
), pp.
72
78
.
4.
Senthil
,
K.
,
Iqbal
,
M. A.
,
Chandel
,
P. S.
, and
Gupta
,
N. K.
,
2017
, “
Study of the Constitutive Behavior of 7075-T651 Aluminum Alloy
,”
Int. J. Impact Eng.
,
108
, pp.
171
190
.
5.
Harikrishna
,
K.
,
Davidson
,
M. J.
,
Seetharam
,
R.
,
Sundar
,
S.
, and
Rajmohan
,
K. S.
,
2023
, “
Investigating the Effects of Deformation-Induced Densification on the Constitutive Behavior and Corrosion Resistance of Al–Zn–Mg Powder Metallurgy Alloy During hot Deformation
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
238
(
6
), pp.
1047
1067
.
6.
Hari Krishna
,
K.
,
MJ
,
D.
,
KS
,
R.
, and
Nithin
,
A. M.
,
2023
, “
Role of Pre-Strain on the Corrosion Behaviour of Al-Zn-Mg P/M Alloy
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
237
(
1
), pp.
218
233
.
7.
Lin
,
Y. C.
,
Li
,
L. T.
,
Fu
,
Y. X.
, and
Jiang
,
Y. Q.
,
2012
, “
Hot Compressive Deformation Behavior of 7075 Al Alloy Under Elevated Temperature
,”
J. Mater. Sci.
,
47
(
3
), pp.
1306
1318
.
8.
McQueen
,
H. J.
, and
Ryan
,
N. D.
,
2002
, “
Constitutive Analysis in Hot Working
,”
Mater. Sci. Eng. A
,
322
(
1–2
), pp.
43
63
.
9.
Xiao
,
W.
,
Wang
,
B.
,
Wu
,
Y.
, and
Yang
,
X.
,
2018
, “
Constitutive Modeling of Flow Behavior and Microstructure Evolution of AA7075 in Hot Tensile Deformation
,”
Mater. Sci. Eng. A
,
712
(
Dec.
), pp.
704
713
.
10.
Harikrishna
,
K.
,
Joseph Davidson
,
M.
,
Dhanush Reddy
,
G.
, and
Veera Venkata Nagaraju
,
K.
,
2024
, “
Overcoming Optical Image Challenges in Automatic Grain Size Measurement Using a Novel Computer Vision Algorithm Applied to Hot Deformation of Al-Zn-Mg Powder Metallurgy Alloy
,”
Mater. Lett.
,
357
(
Nov.
), p.
135743
.
11.
Harikrishna
,
K.
,
Davidson
,
M. J.
, and
Reddy
,
G. D.
,
2023
, “
New Method for Microstructure Segmentation and Automatic Grain Size Determination Using Computer Vision Technology During the Hot Deformation of an Al-Zn-Mg Powder Metallurgy Alloy
,”
J. Mater. Eng. Perform.
12.
Haghdadi
,
N.
,
Zarei-Hanzaki
,
A.
,
Khalesian
,
A. R.
, and
Abedi
,
H. R.
,
2013
, “
Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy
,”
Mater. Des.
,
49
, pp.
386
391
.
13.
Li
,
K.
,
Pan
,
Q.
,
Li
,
R.
,
Liu
,
S.
,
Huang
,
Z.
, and
He
,
X.
,
2019
, “
Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
28
(
2
), pp.
981
994
.
14.
Mirzaie
,
T.
,
Mirzadeh
,
H.
, and
Cabrera
,
J. M.
,
2016
, “
A Simple Zerilli-Armstrong Constitutive Equation for Modeling and Prediction of Hot Deformation Flow Stress of Steels
,”
Mech. Mater.
,
94
, pp.
38
45
.
15.
Zerilli
,
F. J.
,
2004
, “
Dislocation Mechanics-Based Constitutive Equations
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
35
(
9
), pp.
2547
2555
.
16.
Li
,
H.
,
Huang
,
Y.
, and
Liu
,
Y.
,
2023
, “
Dynamic Recrystallization Mechanisms of as-Forged Al–Zn–Mg-(Cu) Aluminum Alloy During Hot Compression Deformation
,”
Mater. Sci. Eng. A
,
878
(
Mar.
), p.
145236
.
17.
Lin
,
Y. C.
,
Zhang
,
J.
, and
Zhong
,
J.
,
2008
, “
Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
752
758
.
18.
Xia
,
Y.
,
Zhang
,
C.
,
Zhang
,
L.
,
Shen
,
W.
, and
Xu
,
Q.
,
2017
, “
A Comparative Study of Constitutive Models for Flow Stress Behavior of Medium Carbon Cr-Ni-Mo Alloyed Steel at Elevated Temperature
,”
J. Mater. Res.
,
32
(
20
), pp.
3875
3884
.
19.
Harikrishna
,
C.
,
Nagaraju
,
C. H.
,
Battina
,
N. M.
, and
Kummitha
,
O. R.
,
2024
, “
Hardness Prediction in the Upsetting Process of Al%ZrO2—An Approach to Machine Learning Using Regression and Classification Models
,”
Trans. Can. Soc. Mech. Eng.
,
48
(
1
), pp.
39
52
.
20.
Zou
,
C.
,
Li
,
J.
,
Wang
,
W. Y.
,
Zhang
,
Y.
,
Lin
,
D.
,
Yuan
,
R.
,
Wang
,
X.
, et al
,
2021
, “
Integrating Data Mining and Machine Learning to Discover High-Strength Ductile Titanium Alloys
,”
Acta Mater.
,
202
, pp.
211
221
.
21.
Wu
,
J.
,
Xu
,
Z.
,
Qiao
,
H.
,
Zhao
,
J.
, and
Huang
,
Z.
,
2021
, “
Mechanical Properties Prediction of Superalloy FGH4095 Treated by Laser Shock Processing Based on Machine Learning
,”
Mater. Lett.
,
297
, p.
129970
.
22.
Opěla
,
P.
,
Schindler
,
I.
,
Kawulok
,
P.
,
Kawulok
,
R.
,
Rusz
,
S.
, and
Sauer
,
M.
,
2022
, “
Shallow and Deep Learning of an Artificial Neural Network Model Describing a Hot Flow Stress Evolution: A Comparative Study
,”
Mater. Des.
,
220
, p.
110880
.
23.
Pal
,
S.
, and
Naskar
,
K.
,
2021
, “
Machine Learning Model Predict Stress-Strain Plot for Marlow Hyperelastic Material Design
,”
Mater. Today Commun.
,
27
(
Febr.
), p.
102213
.
24.
Decke
,
J.
,
Engelhardt
,
A.
,
Rauch
,
L.
,
Degener
,
S.
,
Sajadifar
,
S. V.
,
Scharifi
,
E.
,
Steinhoff
,
K.
,
Niendorf
,
T.
, and
Sick
,
B.
,
2022
, “
Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
,”
Crystals
,
12
(
9
), pp.
1
19
.
25.
Thakur
,
S. K.
,
Kumar Das
,
A.
, and
Jha
,
B. K.
,
2023
, “
Application of Machine Learning Methods for the Prediction of Roll Force and Torque During Plate Rolling of Micro-Alloyed Steel
,”
J. Alloy. Metall. Syst.
,
4
(
June
), p.
100044
.
26.
Huang
,
M.
,
Jiang
,
J.
,
Wang
,
Y.
,
Liu
,
Y.
,
Zhang
,
Y.
, and
Dong
,
J.
,
2023
, “
Comparison and Error Evaluation of Arrhenius Model and Typical Machine Learning Algorithms for High-Temperature Flow Stress Prediction of GH3536 Superalloy
,”
Mater. Lett.
,
349
(
June
), p.
134754
.
27.
Katika
,
H.
,
Damoda
,
R. K.
,
Davidson
,
M. J.
,
Seetharam
,
R.
, and
Kasagani
,
V. V. N.
,
2024
, “
Characteristics of Work Hardening and Constitutive Models Comparison of Powder Metallurgy Al-5.6Zn-2Mg Alloy During Hot Compression
,”
J. Cent. South Univ.
,
31
(
2
), pp.
346
368
.
28.
Harikrishna
,
K.
,
Davidson
,
M. J.
,
Datta
,
R.
,
Nagaraju
,
K. V. V.
, and
Nithin
,
A.
,
2024
, “
Unravelling the Hot Working Behavior, Constitutive Modeling, and Processing Map for Controlling the Microstructure of Sintered Al–Zn–Mg Alloy
,”
Arab. J. Sci. Eng.
49
(
8
), pp.
11195
11214
.
29.
Harikrishna
,
K.
,
Bhowmik
,
A.
,
Davidson
,
M. J.
,
Kumar
,
R.
,
Anqi
,
A. E.
,
Rajhi
,
A. A.
,
Alamri
,
S.
, and
Kumar
,
R.
,
2024
, “
Evaluation of Constitutive Equations for Modeling and Characterization of Microstructure During Hot Deformation of Sintered Al–Zn–Mg Alloy
,”
J. Mater. Res. Technol.
,
28
(
Nov.
), pp.
1523
1537
.
30.
Krishna
,
K. H.
,
Davidson
,
M. J.
,
Rajmohan
,
K. S.
, and
Bharat
,
N.
,
2022
, “
Influence of Incremental Pre-Strain on Corrosion Behavior of Al-Zn-Mg Powder Metallurgy Alloy During Hot Forging
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
237
(
13
), pp.
2990
3008
.
31.
Lin
,
Y. C.
, and
Chen
,
X.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
.
32.
Sellars
,
C. M.
, and
Tegart
,
W. J. M.
,
2012
, “
Hot Workability
,”
Int. Mater. Rev.
,
17
(
1
), pp.
1
24
.
33.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.
34.
Wolla
,
D. W.
,
Davidson
,
M. J.
, and
Khanra
,
A. K.
,
2015
, “
Constitutive Modeling of Powder Metallurgy Processed Al-4%Cu Preforms During Compression at Elevated Temperature
,”
Mater. Des.
,
65
, pp.
83
93
.
35.
Seetharam
,
R.
,
Madhukar
,
P.
,
Yoganjaneyulu
,
G.
,
Subbu
,
S. K.
, and
Davidson
,
M. J.
,
2022
, “
Mathematical Models to Predict Flow Stress and Dynamically Recrystallized Grain Size of Deformed AA7150-5 wt% B4C Composite Fabricated Using Ultrasonic-Probe Assisted Stir Casting Process
,”
Met. Mater. Int.
,
28
(
4
), pp.
931
944
.
36.
Zhou
,
M.
,
Lin
,
Y. C.
,
Deng
,
J.
, and
Jiang
,
Y. Q.
,
2014
, “
Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy
,”
Mater. Des.
,
59
, pp.
141
150
.
37.
Xie
,
B.
,
Li
,
H.
,
Ning
,
Y.
, and
Fu
,
M.
,
2023
, “
Discontinuous Dynamic Recrystallization and Nucleation Mechanisms Associated With 2-, 3- and 4-Grain Junctions of Polycrystalline Nickel-Based Superalloys
,”
Mater. Des.
,
231
, p.
112041
.
38.
Rokni
,
M. R.
,
Roostaei
,
A. A.
, and
Abedi
,
H. R.
,
2011
, “
An Investigation Into the Hot Deformation Characteristics of 7075 Aluminum Alloy
,”
Mater. Des.
,
32
(
4
), pp.
2339
2344
.
39.
Sheikh-Ahmad
,
J.
, and
Twomey
,
J.
,
2007
, “
ANN Constitutive Model for High Strain-Rate Deformation of Al 7075-T6
,”
J. Mater. Process. Technol.
,
186
(
1–3
), pp.
339
345
.
40.
Ji
,
G.
,
Li
,
L.
,
Qin
,
F.
,
Zhu
,
L.
, and
Li
,
Q.
,
2017
, “
Comparative Study of Phenomenological Constitutive Equations for an as-Rolled M50NiL Steel During Hot Deformation
,”
J. Alloys Compd.
,
695
, pp.
2389
2399
.
You do not currently have access to this content.