It has long been recognized that the fatigue life of a component can be divided into a crack initiation phase and a crack propagation phase, but researchers have typically ignored one phase or the other in their analytical models. Even in the stress-life method of life prediction, which implicitly includes both phases, no distinction is made between the initiation and propagation phases. In this paper a methodology for generating initiation and propagation S-N curves will be outlined. It will be shown that for components like gears, both phases represent significant portions of total life. It will also be shown that gear bending fatigue lives for variable amplitude load tests are better predicted by a two-stage linear damage theory compared to the commonly used Miner’s total life linear damage theory.

1.
Averbach, B. L., and Lou, B., 1984, “Fatigue Crack Propagation Through Residual Stress Fields,” Advances in Fracture Research, 3, Pergamon Press, Oxford, pp. 1631–1640.
2.
Kato
,
M.
,
Deng
,
G.
,
Inoue
,
K.
, and
Takatsu
,
N.
,
1993
, “
Evaluation of the Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics
,”
JSME Int. J., Ser. C
,
36
, No.
2
, pp.
233
240
.
3.
Kato
,
M.
,
Inoue
,
K.
,
Deng
,
G.
, and
Jeong
,
B. S.
,
1993
, “
Size Effect in Bending Strength of Carburized Gear Teeth
,”
ASME J. Mech. Des.
,
115
, pp.
1013
1018
.
4.
Pehan
,
S.
,
Hellen
,
T. K.
, and
Flasker
,
J.
,
1995
, “
Applying Numerical Methods for Determining the Service Life of Gears
,”
Fatigue and Fracture of Engineering Materials and Structures
,
18
, No.
9
, pp.
971
979
.
5.
Larsson
,
M.
,
Olund
,
P.
,
Blom
,
R.
,
Walburger
,
H.
,
Melander
,
A.
, and
Preston
,
S.
,
1994
, “
Fatigue Properties after Carburizing
,”
Scand. J. Metall.
,
23
, pp.
62
73
.
6.
Preston
,
S.
,
1993
, “
Fatigue Crack Initiation and Growth from a Gas Carburized Surface
,”
Mater. Trans., JIM
,
34
, No.
1
, pp.
27
32
.
7.
Haibach, E., “Modifizierte Lineare Schadenakkumulationshypothese zur Berucksichtigung des Dauerfestigkeitsabfalls mit fortschreitender Schadigung,” Tech. Mitt., No. 50/70 der Lab. Fur Betriebsfestigkeit, Darmstadt, Germany.
8.
Corten, H. T., and Dolan, T. J., 1956, “Cumulative Fatigue Damage,” Proc. of the International Conference on Fatigue of Metals, Institute of Mechanical Engineers, London, pp. 235–245.
9.
Grover, H. J., 1960, “An Observation Concerning the Cycle Ratio in Cumulative Damage,” Fatigue in Aircraft Structures, STP-274, American Society for Testing and Materials, Philadelphia, pp. 120–124.
10.
Manson, S. S., 1966, “Interfaces between Fatigue, Creep, and Fracture,” Int. J. Fract. Mech.
11.
Manson, S. S., Frecke, J. C., and Ensign, C. R., 1967, “Applications of a Double Linear Damage Rule to Cumulative Fatigue,” Fatigue Crack Propagation, STP-415, American Society for Testing and Materials, Philadelphia, pp. 38.
12.
Kaiser, J., 1950, “Untersuchungen uber das Auftreten Gerauschen Beim Zugversuch [An Investigation into the Occurrence of Noises in Tensile Tests or a Study of Acoustic Phenomena in Tensile Tests],” Ph.D. Dissertation Technische Hochschule Munchen, Munich, FRG.
13.
Scruby, C. B., 1987, “An Introduction to Acoustic Emission,” Journal of Physics, Part E, Sci. Instrum., 20.
14.
Morton
,
H. L.
,
Harrington
,
R. M.
, and
Bjeletich
,
J. G.
,
1973
, “
Acoustic Emissions of Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
5
, No.
3
, pp.
691
691
.
15.
Harris
,
D. O.
, and
Dunegan
,
H. L.
,
1974
, “
Continuous Monitoring of Fatigue Crack Growth by Acoustic Emission Techniques
,”
Exp. Mech.
,
14
, No.
2
, pp.
71
81
.
16.
Sinclair
,
A. C. E.
, and
Connors
,
D. C.
,
1977
, “
Acoustic Emission Analysis during Fatigue Crack Growth in Steel
,”
Mater. Sci. Eng.
,
28
, pp.
263
273
.
17.
Lindley
,
T. C.
,
Palmer
,
I. G.
, and
Richards
,
C. E.
,
1978
, “
Acoustic Emission Monitoring of Fatigue Crack Growth
,”
Mater. Sci. Eng.
,
32
, pp.
1
15
.
18.
Hamel
,
F.
,
Bailon
,
J. P.
, and
Bassim
,
M. N.
,
1981
, “
Acoustic Emission Mechanisms during High Cycle Fatigue
,”
Eng. Fract. Mech.
,
14
, pp.
853
853
.
19.
Lysak
,
M. V.
,
1996
, “
Development of the Theory of Acoustic Emission by Propagating Cracks in Terms of Fracture Mechanics
,”
Eng. Fract. Mech.
,
55
, No.
3
, pp.
443
452
.
20.
Singh
,
A.
,
Houser
,
D. R.
, and
Vijayakar
,
S.
,
1999
, “
Detecting Gear Tooth Breakage using Acoustic Emission: A Feasibility and Sensor Placement Study
,”
ASME J. Mech. Des.
,
121
, No.
4
, pp.
587
593
.
You do not currently have access to this content.