It is important to conduct error analysis of assemblies in order to ensure that the manufactured parts satisfy the design specifications. Traditionally, mechanical tolerances and clearances are modeled as random variables and the analysis is conducted using probabilistic methods. In this work, a new approach, based on interval analysis, is presented for the modeling and analysis of tolerances and clearances. The basic procedure of interval analysis involving solution of simultaneous nonlinear equations is described. The application of the approach in the fuzzy error analysis of planar and spatial mechanisms is also outlined. The treatment of the tolerances and clearances of the mechanism as interval numbers leads to a better and a more realistic estimation of the analysis results. Numerical examples are presented to illustrate the computational procedures. The results of the interval analysis, although philosophically different, are compared with those given by the probabilistic method for comparable input data; the differences found in the two sets of results are explained in terms of the basic characteristics of the two methods. This work denotes the first application of interval methods for the modeling of tolerances and clearances and the fuzzy error analysis of mechanisms.

1.
Garrett
,
R. E.
, and
Hall
,
A. S.
,
1969
, “
Effect of Tolerance and Clearance in Linkage Design
,”
ASME J. Ind.
,
90
,
Feb.
pp.
198
202
.
2.
Dhande
,
S. G.
, and
Chakraborty
,
J.
,
1973
, “
Analysis and Synthesis of Mechanical Error in Linkages-A Stochastic Approach
,” ASME J. Ind., Aug. pp. 672–676.
3.
Rhyu
,
J. H.
, and
Kwak
,
B. M.
,
1988
, “
Optimal Stochastic Design of Four-Bar Mechanisms for Tolerance and Clearance
,” ASME J. Mech. Des., Sept. pp. 255–262.
4.
Mallik
,
Asok K.
, and
Dhande
,
Sanjay G.
,
1987
, “
Analysis and Synthesis of Mechanical Error in Path-Generating Linkages using a Stochastic Approach
,”
Mech. Mach. Theory
,
pp.
115
123
.
5.
Benhabib
,
B.
,
Fenton
,
R. G.
, and
Goldenberg
,
A. A.
,
1987
, “
Computer-Aided Joint Error Analysis of Robots
,”
IEEE Journal of Robotics and Automation
,
RA-3
(
4
), pp.
317
322
, Aug.
6.
Azadivar
,
F.
,
1987
, “
The Effect of Joint Position Errors of Industrial Robots on Their Performance in Manufacturing Operations
,”
IEEE Journal of Robotics and Automation
,
RA-3
(
2
), pp.
109
114
, April.
7.
Broderick
,
P. L.
, and
Cipra
,
R. J.
,
1998
, “
A Method for Determining and Correcting Robot Position and Orientation Errors Due to Manufacturing
,”
ASME J. Mech. Des.
,
110
,
Mar.
pp.
3
10
.
8.
Kakizaki
,
T.
,
Deck
,
J. F.
, and
Dubowsky
,
S.
,
1993
, “
Modeling the Spatial Dynamics of Robotic Manipulators with Flexible Links and Joint Clearances
,”
ASME J. Mech. Des.
,
115
,
Dec.
pp.
839
847
.
9.
Hoeltzel, D. A., and Chieng, W.-H., 1989, “Unified Approach to the Kinematic Analysis of Joint Clearances and Link Length Tolerances for Determination of the Rotational and Positional Accuracy of Planar Mechanisms,” ASME Design Engineering Division, Mechanical Systems Analysis, Design and Simulation, Advances in Design Automation, Sep., Montreal, Que, Canada, pp. 345–356.
10.
Lee
,
S. J.
, and
Gilmore
,
B. J.
,
1991
, “
The Determination of the Probabilistic Properties of Velocities and Accelerations in Kinematic Chains with Uncertainty
,”
ASME J. Mech. Des.
,
113
,
Mar.
pp.
84
90
.
11.
Lee
,
S. J.
,
Gilmore
,
B. J.
, and
Ogot
,
M. M.
,
1993
, “
Dimensional Tolerance Allocation of Stochastic Dynamic Mechanical Systems Through Performance and Sensitivity Analysis
,”
ASME J. Mech. Des.
,
115
,
Sept.
pp.
392
402
.
12.
Choi
,
J.-H.
,
Lee
,
S. J.
, and
Choi
,
D.-H.
,
1998
, “
Stochastic Linkage Modeling for Mechanical Error Analysis of Planar Mechanisms
,” Mechanics of Structures and Machines, Aug. pp. 257–276.
13.
Deck
,
J. F.
, and
Dubowsky
,
S.
,
1994
, “
On the Limitations of Predictions of the Dynamic Response of Machines with Clearance Connections
,”
ASME J. Mech. Des.
,
116
, pp.
833
841
.
14.
Rao
,
S. S.
, and
Berke
,
L.
,
1997
, “
Analysis of Uncertain Structural Systems Using Interval Analysis
,”
AIAA J.
,
35
(
4
), pp.
727
735
, April.
15.
Rao
,
R. S.
,
Asaithambi
,
A.
, and
Agrawal
,
S. K.
,
1998
, “
Inverse Kinematic Solution of Robot Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
,
120
,
Mar.
pp.
147
150
.
16.
Arnold, Kaufmann, and M. M. Gupta, 1991, Introduction to Fuzzy Arithmetic-Theory and Applications, International Thomson Computer Press.
17.
Rao, S. S., 2002, Applied Numerical Methods for Engineers and Scientists, Prentice Hall.
18.
Moore, R. E., 1979, Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, SIAM, Philadelphia.
19.
Spong, M. W., and Vidyasagar, M., 1989, Robot Dynamics and Control, John Wiley & Sons.
20.
Creveling, C. M., 1997, Tolerancing Design: A Handbook for Developing Optimal Specifications, Addison Wesley Longman, Inc.
21.
Weill
,
R.
,
1988
, “
Tolerancing for Function
,” CIRP Ann., 37(2).
22.
Dieter, G. E., 2000, Engineering Design: A Materials and Processing Approach, McGraw-Hill Companies, Inc.
23.
Civanlar
,
M. R.
, and
Trussell
,
H. J.
,
1986
, “
Constructing Membership Functions Using Statistical Data
,”
Fuzzy Sets Syst.
,
18
, pp.
1
13
.
24.
Krawczyk
,
R.
,
1969
, “
Newton-algorithmen zur bestimmung von Nullstellen mit Fehlerschranken
,”
Computing
,
4
, pp.
187
201
.
25.
Collavizza
,
M.
,
Deloble
,
F.
, and
Rueher
,
M.
,
1999
, “
Computing Partial Consistencies
,”
Reliable Computing
,
5
, pp.
1
16
.
26.
Schichl, H., and Neumaier, A., “Exclusion Regions for Systems of Equations,” http://www.mat.univie.ac.at/∼neum/.
27.
Ratscheck, H., and Rokne, J., 1995, “Interval Methods,” Handbook of Global Optimization, R. Horst and P. M. Pardalos, eds., pp. 751–819, Kluwer.
28.
Tapia
,
R. A.
,
1971
, “
The Kantorovitch Theorem for Newton’s Method
,”
American Mathematic Monthly
,
78
, pp.
389
392
.
You do not currently have access to this content.