Bistable mechanical devices remain stable in two distinct positions without power input. They find application in valves, switches, closures, and clasps. Mechanically bistable behavior results from the storage and release of energy, typically in springs, with stable positions occurring at local minima of stored energy. Compliant mechanisms offer an elegant way to achieve this behavior by incorporating both motion and energy storage into the same flexible element. Interest in compliant bistable mechanisms has also recently increased because of the advantages of bistable behavior in many micro-electro-mechanical systems (MEMS). Design of compliant or rigid-body bistable mechanisms typically requires simultaneous consideration of both energy storage and motion requirements. This paper simplifies this process by developing theory that provides prior knowledge of mechanism configurations that guarantee bistable behavior. Configurations which include one or more translational, or slider, joints are studied in this work. Several different mechanism types are analyzed to determine compliant segment placement that will ensure bistable mechanism operation. Examples demonstrate the power of the theory in design.

1.
Schulze
,
E. F.
,
1955
, “
Designing Snap-Action Toggles
,” Prod. Eng. (N.Y.), pp. 168–170.
2.
Howell
,
L. L.
,
Rao
,
S. S.
, and
Midha
,
A.
,
1994
, “
The Reliability-Based Optimal Design of a Bistable Compliant Mechanism
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
3.
Opdahl, P. G., Jensen, B. D., and Howell, L. L., 1998, “An Investigation into Compliant Bistable Mechanisms,” Proc. 1998 ASME Design Engineering Technical Conferences, DETC98/MECH-5914.
4.
Wagner, B., Quenzer, H. J., Hoershelmann, S., Lisec, T., and Juerss, M., 1996, “Bistable Microvalve with Pneumatically Coupled Membranes,” Proc. IEEE Micro Electro Mechanical Systems pp. 384–388.
5.
Goll
,
C.
,
Bacher
,
W.
,
Buestgens
,
B.
,
Maas
,
D.
,
Menz
,
W.
, and
Schomburg
,
W. K.
,
1996
, “
Microvalves with Bistable Buckled Polymer Diaphragms
,”
J. Micromech. Microeng.
,
6
(
1
), pp.
77
79
.
6.
Shinozawa, Y., Abe, T., and Kondo, T., 1997, “Proportional Microvalve Using a Bi-Stable Magnetic Actuator,” Proc. 1997 IEEE Micro Electro Mechanical Systems (MEMS), pp. 233–237.
7.
Schomburg
,
W. K.
, and
Goll
,
C.
,
1998
, “
Design Optimization of Bistable Microdiaphragm Valves
,”
Sens. Actuators, A
,
64
(
3
), pp.
259
264
.
8.
Ha¨lg
,
B.
,
1990
, “
On A Nonvolatile Memory Cell Based on Micro-?electro-mechanics
,” IEEE Micro Electro Mechanical Systems, pp. 172–176.
9.
Matoba
,
H.
,
Ishikawa
,
T.
,
Kim
,
C.
, and
Muller
,
R. S.
,
1994
, “
A Bistable Snapping Mechanism
,” IEEE Micro Electro Mechanical Systems, pp. 45–50.
10.
Kruglick, E. J. J., and Pister, K. S. J., 1998, “Bistable MEMS Relays and Contact Characterization,” 1998 Solid-State Sensor and Actuator Workshop, pp. 333–337.
11.
Sun, X., Farmer, K. R., and Carr, W., 1998, “Bistable Microrelay Based on Two-Segment Multimorph Cantilever Actuators,” Proc. 1998 IEEE Micro Electro Mechanical Systems (MEMS), pp. 154–159.
12.
Vangbo
,
M.
, and
Ba¨klund
,
Y.
,
1998
, “
A Lateral Symmetrically Bistable Buckled Beam
,”
J. Micromech. Microeng.
,
8
, pp.
29
32
.
13.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
.
14.
Saif
,
M. T. A.
,
2000
, “
On a Tunable Bistable MEMS—Theory and Experiment
,”
J. MEMS
,
9
(
2
), pp.
157
169
.
15.
Qiu, J., Lang, J. H., and Slocum, A. H., 2001, “A Centrally-Clamped Parallel-Beam Bistable MEMS Mechanism,” Proc. IEEE Micro Electro Mechanical Systems (MEMS) 2001, CH37090, pp. 353–356.
16.
Baker
,
M. S.
, and
Howell
,
L. L.
,
2002
, “
On-Chip Actuation of an In-Plane Compliant Bistable Micro-Mechanism
,”
J. Microelectromech. Syst.
,
11
, pp.
566
573
.
17.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully-Compliant Bistable Micromechanism
,”
J. MEMS
,
12
, pp.
273
280
.
18.
Hoffman
,
M.
,
Kopka
,
P.
,
Gross
,
T.
, and
Voges
,
E.
,
1999
, “
Optical Fibre Switches Based on Full Wafer Silicon Micromachining
,”
J. Micromech. Microeng.
,
9
(
2
), pp.
151
155
.
19.
Pieri
,
F.
, and
Piotto
,
M.
,
2000
, “
A Micromachined Bistable 1×2 Switch for Optical Fibers
,”
Microelectron. Eng.
,
53
(
1
), pp.
561
564
.
20.
Maekoba
,
H.
,
Helin
,
P.
,
Reyne
,
G.
,
Bourouina
,
T.
, and
Fujita
,
H.
,
2001
, “
Self-Aligned Vertical Mirror and V-grooves Applied to an Optical-Switch: Modeling and Optimization of Bi-Stable Operation by Electromagnetic Actuation
,”
Sens. Actuators, A
,
87
(
3
), pp.
172
178
.
21.
Fleming, J. G., 1998, “Bistable Membrane Approach to Micromachined Displays,” Flat Panel Display Materials-1998 MRS Symposium, Vol. 508, pp. 219–224.
22.
Limaye, A. A., King, C. W., and Campbell, M. I., 2003, “Analysis of Multiple Equilibrium Positions in Magnetostatic Field,” Proc. ASME 2003 Design Engineering Technical Conf., DETC2003/DAC-48841.
23.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
18
25
.
24.
Fang
,
W.
, and
Wickert
,
J. A.
,
1995
, “
Comments on Measuring Thin-Film Stresses Using Bi-layer Micromachined Beams
,”
J. Micromech. Microeng.
,
5
, pp.
276
281
.
25.
Ziebart
,
V.
,
Paul
,
O.
,
Mu¨nch
,
U.
,
Ju¨rg
,
S.
, and
Baltes
,
H.
,
1998
, “
Mechanical Properties of Thin Films from the Load Deflection of Long Clamped Plates
,”
J. MEMS
,
7
(
3
), pp.
320
328
.
26.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
,
1971
, “
A Survey of Flexible Link Mechanisms Having Lower Pairs
,”
J. Mec.
,
6
(
3
), pp.
97
105
.
27.
Jensen
,
B. D.
, and
Howell
,
L. L.
, , “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,” ASME J. Mech. Des., in press.
28.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
29.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
30.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
31.
Edwards
,
B. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2001
, “
A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
464
468
.
32.
Derderian, J. M., Howell, L. L., Murphy, M. D., Lyon, S. M., and Pack, S. D., 1996, “Compliant Parallel-Guiding Mechanisms,” Proc. 1996 ASME Design Engineering Technical Conferences 96-DETC/MECH-1208.
33.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
, pp.
121
125
.
34.
Jensen, B. D., Howell, L. L., Gunyan, D. B., and Salmon, L. G., 1997, “The Design and Analysis of Compliant MEMS Using the Pseudo-Rigid-Body Model,” Microelectro-mechanical Systems (MEMS) 1997, 1997 ASME Int. Mech. Eng. Congress and Exposition, DSC-Vol. 62, pp. 119–126.
35.
Lyon
,
S. M.
,
Evans
,
M. S.
,
Erickson
,
P. A.
, and
Howell
,
L. L.
,
1999
, “
Prediction of the First Modal Frequency of Compliant Mechanisms Using the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
309
313
.
36.
Mettlach, G. A., and Midha, A., 1996, “Using Burmester Theory in the Design of Compliant Mechanisms,” Proc. 1996 ASME Design Engineering Technical Conferences, 96-DETC/MECH-1181.
37.
Leipholz, H., 1970, Stability Theory, Academic Press, New York and London.
38.
Howell, L. L., 2001, Compliant Mechanisms, John Wiley and Sons, New York, NY.
You do not currently have access to this content.