Preliminary design of a complex system often involves exploring a broad design space. This may require repeated use of computationally expensive simulations. To ease the computational burden, surrogate models are built to provide rapid approximations of more expensive models. However, the surrogate models themselves are often expensive to build because they are based on repeated experiments with computationally expensive simulations. An alternative approach is to replace the detailed simulations with simplified approximate simulations, thereby sacrificing accuracy for reduced computational time. Naturally, surrogate models built from these approximate simulations are also imprecise. A strategy is needed for improving the precision of surrogate models based on approximate simulations without significantly increasing computational time. In this paper, a new approach is taken to integrate data from approximate and detailed simulations to build a surrogate model that describes the relationship between output and input parameters. Experimental results from approximate simulations form the bulk of the data, and they are used to build a model based on a Gaussian process. The fitted model is then “adjusted” by incorporating a small amount of data from detailed simulations to obtain a more accurate prediction model. The effectiveness of this approach is demonstrated with a design example involving cellular materials for an electronics cooling application. The emphasis is on the method and not on the results per se.

1.
Wu
,
C. F. J.
, and
Hamada
,
M.
, 2000,
Experiments, Planning, Analysis and Parameter Design Optimization
,
Wiley
,
New York
.
2.
Montgomery
,
D. C.
, 1997,
Design and Analysis of Experiments
, 4th ed.,
Wiley
,
New York
.
3.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
4.
Seepersad
,
C. C.
,
Dempsey
,
B. M.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
McDowell
,
D. L.
, 2004, “
Design of Multifunctional Honeycomb Materials
,”
AIAA J.
0001-1452,
42
(
5
), pp.
1025
1033
.
5.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P.
, 2002, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
6.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley Series in Probability and Statistics
,
Wiley
,
New York
.
7.
Matherton
,
G.
, 1963, “
Principles of Geostatistics
,”
Econ. Geol.
0361-0128,
58
, pp.
1246
1266
.
8.
Cressie
,
N.
, 1988, “
Geostatistics
,”
Am. Stat.
0003-1305,
43
(
4
), pp.
197
202
.
9.
Laslett
,
G. M.
, 1994, “
Kriging and Splines: An Empirical Comparison of Their Predictive Performance in Some Applications
,”
J. Am. Stat. Assoc.
0162-1459,
89
, pp.
391
400
.
10.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design
,”
Eng. Comput.
0264-4401 (Special issue in honor of Professor S. J. Fenves),
17
, pp.
129
150
.
11.
Wujek
,
B. A.
, and
Renaud
,
J. E.
, 1998, “
New Adaptive Move-Limit Management Strategy for Approximate Optimization. Part 1
,” A
AIAA J.
0001-1452,
36
(
10
), pp.
1911
1921
.
12.
Wujek
,
B. A.
, and
Renaud
,
J. E.
, 1998, “
New Adaptive Move-Limit Management Strategy for Approximate Optimization: Part 2
,”
AIAA J.
0001-1452,
36
(
10
), pp.
1922
1934
.
13.
Rodriguez
,
J. F.
,
Perez
,
V. M.
,
Padmanabhan
,
D.
, and
Renaud
,
J. E.
, 2001, “
Sequential Approximate Optimization Using Variable Fidelity Response Surface Approximations
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
24
34
.
14.
Akexandrov
,
N.
,
Dennis
,
J. E. J.
,
Lewis
,
R. M.
, and
Torczon
,
V.
, 1998, “
A Trust Region Framework for Managing the Use of Approximation Models in Optimization
,”
Struct. Optim.
0934-4373,
15
(
1
), pp.
16
23
.
15.
Chen
,
W.
,
Allen
,
J. K.
,
Schrage
,
D. P.
, and
Mistree
,
F.
, 1997, “
Statistical Experimentation Methods for Achieving Affordable Concurrent Systems Design
,”
AIAA J.
0001-1452,
35
(
5
), pp.
893
900
.
16.
Toropov
,
V.
,
van Keulen
,
F.
,
Markine
,
V.
, and
de Doer
,
H.
, 1996, “
Refinements in the Multi-Point Approximation Method to Reduce the Effects of Noisy Structural Response
,” in
6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA, AIAA J.0001-1452,
2
, pp.
941
951
.
17.
Wang
,
G.
,
Dong
,
Z.
, and
Atchison
,
P.
, 2001, “
Adaptive Response Surface Method—a Global Optimization Scheme for Computation-Intensive Design Problems
,”
Eng. Optimiz.
0305-215X,
33
(
6
), pp.
707
734
.
18.
Wang
,
G.
, 2003, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Designs
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
210
220
.
19.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2003, “
An Information-Theoretic Entropy Metric for Assessing Multiobjective Optimization Solution Set Quality
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
655
663
.
20.
Lin
,
Y.
,
Mistree
,
F.
, and
Allen
,
J. K.
, 2004, “
A Sequential Exploratory Experimental Design Method: Development of Appropriate Empirical Models in Design
,” in
ASME Design Engineering Technical Conferences—Advances in Design Automation Conference
,
Salt Lake City, UT
, ASME, Paper No. DETC2004/DAC-57527, (September 28 to October 2, 2004).
21.
Wang
,
G. G.
, and
Simpson
,
T. W.
, 2004, “
Fuzzy Clustering Based Hierarchical Metamodeling for Design Space Reduction and Optimization
,”
Eng. Optimiz.
0305-215X,
36
(
3
), pp.
313
335
.
22.
Box
,
G. E. P.
, and
Draper
,
N. R.
, 1969,
Evolutionary Operation: A Statistical Method for Process Management
,
Wiley
,
New York
.
23.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1999, “
Statistical Approximations for Multidisciplinary Optimization: The Problem of Size
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
275
286
.
24.
Watson
,
G. S.
, 1961, “
A Study of the Group Screening Method
,”
Technometrics
0040-1706,
3
(
3
), pp.
371
388
.
25.
Bettonvil
,
B.
, 1990,
Detection of Important Factors by Sequential Bifurcation
,
Tilburg University Press
,
Tilburg, The Netherlands
.
26.
Bettonvil
,
B.
, and
Kleijnen
,
J. J. C.
, 1996, “
Searching for Important Factors in Simulation Models With Many Factors: Sequential Bifurcation
,”
Eur. J. Oper. Res.
0377-2217,
96
(
1
), pp.
180
194
.
27.
Wu
,
C. F. J.
, 1993, “
Construction of Supersaturated Designs through Partially Aliased Interactions
,”
Biometrika
0006-3444,
80
(
3
), pp.
661
669
.
28.
Holcomb
,
D. R.
,
Montgomery
,
D. C.
, and
Carlyle
,
W. M.
, 2003, “
Analysis of Supersaturated Designs
,”
J. Quality Technol.
0022-4065,
35
(
1
), pp.
13
27
.
29.
Qian
,
A.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Wu
,
C. F. J.
, and
Allen
,
J. K.
, 2004, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,” in
ASME Design Engineering Technical Conferences—Advances in Design Automation Conference
,
Salt Lake City, UT
, ASME, Paper No. DETC2004/57486.
30.
Osio
,
I. C.
, and
Amon
,
C. H.
, 1996, “
An Engineering Design Methodology With Multistage Bayesian Surrogates and Optimal Sampling
,”
Res. Eng. Des.
0934-9839,
8
, pp.
189
206
.
31.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
664
672
.
32.
Bandler
,
J.
,
Cheng
,
Q.
,
Dakroury
,
S.
,
Mohamed
,
A.
,
Bakr
,
M.
,
Madsen
,
K.
, and
Sndergaard
,
J.
, 2004, “
Space Mapping: The State of The Art
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
52
, pp.
337
361
.
33.
Bakr
,
M. H.
,
Bandler
,
J. W.
,
Madsen
,
K.
, and
Sndergaard
,
J.
, 2000, “
Review of the Space Mapping Approach to Engineering Optimization and Modeling
,”
Optim. Eng.
1389-4420,
1
, pp.
241
276
.
34.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
35.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
, 2001, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
0001-1452,
39
(
12
), pp.
2233
2241
.
36.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening, Predicting and Computer Experiments
,”
Technometrics
0040-1706,
34
, pp.
15
25
.
37.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
, 1995, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
16
, pp.
1190
1208
.
38.
R Development Core Team
, 2004, “
R: A Language and Environment for Statistical Computing
,” http://www.Rproject.orghttp://www.Rproject.org.
39.
Handcock
,
M. S.
, and
Stein
,
M. L.
, 1993, “
A Bayesian Analysis of Kriging
,”
Technometrics
0040-1706,
35
(
4
), pp.
403
410
.
40.
Handcock
,
M. S.
, and
Wallis
,
J. R.
, 1994, “
An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields
,”
J. Am. Stat. Assoc.
0162-1459,
89
, pp.
386
378
.
41.
Cochran
,
J. K.
,
Lee
,
K. J.
,
McDowell
,
D. L.
, and
Sanders
,
T. H.
, 2000, “
Low Density Monolithic Honeycombs by Thermal Chemical Processing
,” in
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
,
Huntsville, AL
, (September 18-20, 2000,
NASA
,
Washington, DC
).
42.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
43.
Hayes
,
A. M.
,
Wang
,
A.
,
Dempsey
,
B. M.
, and
McDowell
,
D. L.
, 2001, “
Mechanics of Linear Cellular Alloys
,”
Mech. Mater.
0167-6636,
36
, pp.
691
713
.
44.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
, 2001, “
The Topological Design of Multifunctional Cellular Materials
,”
Prog. Mater. Sci.
0079-6425,
46
(
3,4
), pp.
309
327
.
45.
FLUENT, 1998,
Fluent, Inc.
, Release 5.5.14 (3d, segregated, laminar).
46.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
Wiley
,
New York
.
You do not currently have access to this content.