The synthesis of the pitch surfaces of any pair of external and internal skew gears, using dual algebra and the principle of transference, is the subject of this paper. The spatial motion of the Euclidean space is transferred to the dual space in order to obtain a simplified dual spherical motion, thus emulating the motion of bevel gears. The relative screw motion is hence analyzed by determining the position of the instant screw axis and the angular and sliding velocities. Moreover, the hyperboloid pitch surfaces of the driving and driven gears are synthesized, along with the helicoid pitch surface of their rack. Several numerical results are reported.
Issue Section:
Research Papers
1.
Mac Cord
, C. W.
, 1889, Kinematics
, Wiley
, New York
, Chap. XII, pp. 242
–266
.2.
Grant
, G. B.
, 1958, A Treatise on Gear Wheels
, Philadelphia Gear Works
, Philadelphia
.3.
Dudley
, D.
, 1992, Dudley’s Gear Handbook
, McGraw-Hill
, New York
.4.
Litvin
, F. L.
, 1994, Gear Geometry and Applied Theory
, Prentice Hall
, Englewood Cliffs, NJ
.5.
Figliolini
, G.
, and Angeles
, J.
, 2003, “The Synthesis of Elliptical Gears Generated by Shaper-Cutters
,” ASME J. Mech. Des.
1050-0472, 125
(4
), pp. 793
–801
.6.
Zhang
, Y.
, and Xu
, H.
, 2003, “Pitch Cone Design and Avoidance of Contact Envelope and Tooth Undercutting for Conical Worm Gear Drives
,” ASME J. Mech. Des.
1050-0472, 125
(1
), pp. 169
–177
.7.
Wu
, J. L.
, Liu
, C. C.
, Tsay
, C. B.
, and Nagata
, S.
, 2003, “Mathematical Model and Surface Deviation of Helipoid Gears Cut by Shaper Cutters
,” ASME J. Mech. Des.
1050-0472, 125
(2
), pp. 351
–355
.8.
Figliolini
, G.
, and Angeles
, J.
, 2005, “Synthesis of the Base Curves for N-lobed Elliptical Gears
,” ASME J. Mech. Des.
1050-0472, 127
(5
), pp. 997
–1005
.9.
Figliolini
, G.
, and Angeles
, J.
, 2005, “Algorithms for Involute and Octoidal Bevel-Gear Generation
,” ASME J. Mech. Des.
1050-0472, 127
(4
), pp. 664
–672
.10.
Dyson
, A.
, 1969, A General Theory of the Kinematics and Geometry of Gears in Three Dimensions
, Clarendon
, Oxford
.11.
Dooner
, D. B.
, and Seireg
, A. A.
, 1995, The Kinematic Geometry of Gearing
, Wiley
, New York
.12.
Phillips
, J.
, 2003, General Spatial Involute Gearing
, Springer
, Berlin
.13.
Xiao
, D. Z.
, and Yang
, A. T.
, 1989, “Kinematics of Three Dimensional Gearing
,” Mech. Mach. Theory
0094-114X, 24
, pp. 245
–255
.14.
Dooner
, D. B.
, and Seireg
, A. A.
, 1999, “An Interactive Approach to the Integrated Design and Manufacture of Gear Pairs
,” Fourth World Congress on Gearing and Power Transmission
, Paris (France)
, Vol. 1
, pp. 317
–322
.15.
Dooner
, D. B.
, 2002, “On the Three Laws of Gearing
,” ASME J. Mech. Des.
1050-0472, 124
(4
), pp. 733
–744
.16.
Lagutin
, S. A.
, 2003, “Synthesis of Spatial Gearings by Aid of Meshing Space
,” International Conference Power Transmission
, Vol. 3
, Varna, Bulgaria
, pp. 343
–346
.17.
Stachel
, H.
, 2004, “On Jack Phillips Spatial Involute Gearing
,” 11th International Conference on Geometry and Graphics
, Guangzhou, China
, pp. 43
–48
.18.
González-Palacios
, M. A.
, and Angeles
, J.
, 1994, “The Generation of Contact Surfaces of Indexing Cam Mechanisms-A Unified Approach
,” ASME J. Mech. Des.
1050-0472, 116
, pp. 369
–374
.19.
Figliolini
, G.
, and Angeles
, J.
, 1999, “On the Geometry of the Kinematic Synthesis of Spatial Gears with Skew Axes
,” XIV AIMETA National Congress of the Italian Society of Theoretical and Applied Mechanics
, Como, Italy
, Mechanics of Machines, paper 31.20.
Figliolini
, G.
, 2004, “Application of the Dual Algebra to the Synthesis of Skew-Gears
,” Fifth IDMME International Conference on Integrated Design and Manufacturing in Mechanical Engineering
, Bath, UK
, paper 151.21.
Ravani
, B.
, and Wang
, J. W.
, 1991, “Computer Aided Geometric Design of Line Constructions
,” ASME J. Mech. Des.
1050-0472, 113
(4
), pp. 363
–371
.22.
González-Palacios
, M. A.
, and Angeles
, J.
, 1993, Cam Synthesis
, Kluwer Academic
, Dordrecht
.23.
Ramahi
, A.
, and Tokad
, Y.
, 1998, “On the Kinematics of Three-Link Spatial Cam Mechanisms
,” Meccanica
0025-6455, 33
(4
), pp. 349
–361
.24.
Fisher
, I. S.
, 1999, Dual-Number Methods in Kinematics, Statics and Dynamics
, CRC Press
, New York
.25.
Phillips
, J.
, 1990, Freedom in Machinery
, Cambridge University Press
, Cambridge
, Vols. 1–2
.26.
Ball
, R. S.
, 1998, A Treatise on the Theory of Screw
, Cambridge University Press
, Cambridge
.27.
Hunt
, K. H.
, 1978, Kinematic Geometry of Mechanisms
, Oxford University Press
, Oxford
.28.
Veldkamp
, G. R.
, 1976, “On the Use of Dual Number, Vectors and Matrices in Instantaneous Spatial Kinematics
,” Mech. Mach. Theory
0094-114X, 11
(2
), pp. 141
–156
.29.
Chevallier
, D. P.
, 1991, “Lie Algebras, Modules, Dual Quaternions and Algebraic Methods in Kinematics
,” Mech. Mach. Theory
0094-114X, 26
(6
), pp. 613
–627
.30.
Angeles
, J.
, 1994, “The Application of Dual Algebra to Kinematic Analysis
,”J.
Angeles
and E.
Zakhariev
, eds. Computational Methods in Mechanisms
, Kluwer Academic
, Dordrecht
, pp. 101
–108
.31.
Fisher
, I. S.
, 1998, “The Dual Angle and Axis of a Screw Motion
,” Mech. Mach. Theory
0094-114X, 33
(3
), pp. 331
–340
.32.
Zhang
, Y.
, and Ting
, K. L.
, 2004, “On the Basis Screws and Screw Systems of Point-Line and Line Displacements
,” ASME J. Mech. Des.
1050-0472, 126
(1
), pp. 56
–62
.33.
Hsia
, L. M.
, and Yang
, A. T.
, 1981, ”On the Principle of Transference in Three-Dimensional Kinematics
,” ASME J. Mech. Des.
1050-0472, 103
(3
), pp. 652
–656
.34.
Rico-Martínez
, J. M.
, and Duffy
, J.
, 1993, “The Principle of Transference: History, Statements and Proof
,” Mech. Mach. Theory
0094-114X, 28
(1
), pp. 165
–177
.35.
Reuleaux
, F.
, 1963, The Kinematics of Machinery
, English version made by A. B. W.
Kennedy
, Dover
, New-York
.36.
Beggs
, J. S.
, 1959, “Ein Beitrag zur Analyse Räumlicher Mechanismen
,” Doctoral dissertation, Technische Hochschule Hannover, Hannover.37.
Phillips
, J. R.
, and Hunt
, K. H.
, 1964, “On the Theorem of Three Axes in the Spatial Motion of Three Bodies
,” Australian J. Appl. Sci.
, 15
, pp. 267
–287
.38.
Pottmann
, H.
, and Wallner
, J.
, 2001, Computational Line Geometry
, Springer
, Berlin
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.