The synthesis of the pitch surfaces of any pair of external and internal skew gears, using dual algebra and the principle of transference, is the subject of this paper. The spatial motion of the Euclidean space is transferred to the dual space in order to obtain a simplified dual spherical motion, thus emulating the motion of bevel gears. The relative screw motion is hence analyzed by determining the position of the instant screw axis and the angular and sliding velocities. Moreover, the hyperboloid pitch surfaces of the driving and driven gears are synthesized, along with the helicoid pitch surface of their rack. Several numerical results are reported.

1.
Mac Cord
,
C. W.
, 1889,
Kinematics
,
Wiley
,
New York
, Chap. XII, pp.
242
266
.
2.
Grant
,
G. B.
, 1958,
A Treatise on Gear Wheels
,
Philadelphia Gear Works
,
Philadelphia
.
3.
Dudley
,
D.
, 1992,
Dudley’s Gear Handbook
,
McGraw-Hill
,
New York
.
4.
Litvin
,
F. L.
, 1994,
Gear Geometry and Applied Theory
,
Prentice Hall
,
Englewood Cliffs, NJ
.
5.
Figliolini
,
G.
, and
Angeles
,
J.
, 2003, “
The Synthesis of Elliptical Gears Generated by Shaper-Cutters
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
793
801
.
6.
Zhang
,
Y.
, and
Xu
,
H.
, 2003, “
Pitch Cone Design and Avoidance of Contact Envelope and Tooth Undercutting for Conical Worm Gear Drives
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
169
177
.
7.
Wu
,
J. L.
,
Liu
,
C. C.
,
Tsay
,
C. B.
, and
Nagata
,
S.
, 2003, “
Mathematical Model and Surface Deviation of Helipoid Gears Cut by Shaper Cutters
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
351
355
.
8.
Figliolini
,
G.
, and
Angeles
,
J.
, 2005, “
Synthesis of the Base Curves for N-lobed Elliptical Gears
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
997
1005
.
9.
Figliolini
,
G.
, and
Angeles
,
J.
, 2005, “
Algorithms for Involute and Octoidal Bevel-Gear Generation
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
664
672
.
10.
Dyson
,
A.
, 1969,
A General Theory of the Kinematics and Geometry of Gears in Three Dimensions
,
Clarendon
,
Oxford
.
11.
Dooner
,
D. B.
, and
Seireg
,
A. A.
, 1995,
The Kinematic Geometry of Gearing
,
Wiley
,
New York
.
12.
Phillips
,
J.
, 2003,
General Spatial Involute Gearing
,
Springer
,
Berlin
.
13.
Xiao
,
D. Z.
, and
Yang
,
A. T.
, 1989, “
Kinematics of Three Dimensional Gearing
,”
Mech. Mach. Theory
0094-114X,
24
, pp.
245
255
.
14.
Dooner
,
D. B.
, and
Seireg
,
A. A.
, 1999, “
An Interactive Approach to the Integrated Design and Manufacture of Gear Pairs
,”
Fourth World Congress on Gearing and Power Transmission
,
Paris (France)
, Vol.
1
, pp.
317
322
.
15.
Dooner
,
D. B.
, 2002, “
On the Three Laws of Gearing
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
733
744
.
16.
Lagutin
,
S. A.
, 2003, “
Synthesis of Spatial Gearings by Aid of Meshing Space
,”
International Conference Power Transmission
, Vol.
3
,
Varna, Bulgaria
, pp.
343
346
.
17.
Stachel
,
H.
, 2004, “
On Jack Phillips Spatial Involute Gearing
,”
11th International Conference on Geometry and Graphics
,
Guangzhou, China
, pp.
43
48
.
18.
González-Palacios
,
M. A.
, and
Angeles
,
J.
, 1994, “
The Generation of Contact Surfaces of Indexing Cam Mechanisms-A Unified Approach
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
369
374
.
19.
Figliolini
,
G.
, and
Angeles
,
J.
, 1999, “
On the Geometry of the Kinematic Synthesis of Spatial Gears with Skew Axes
,”
XIV AIMETA National Congress of the Italian Society of Theoretical and Applied Mechanics
,
Como, Italy
, Mechanics of Machines, paper 31.
20.
Figliolini
,
G.
, 2004, “
Application of the Dual Algebra to the Synthesis of Skew-Gears
,”
Fifth IDMME International Conference on Integrated Design and Manufacturing in Mechanical Engineering
,
Bath, UK
, paper 151.
21.
Ravani
,
B.
, and
Wang
,
J. W.
, 1991, “
Computer Aided Geometric Design of Line Constructions
,”
ASME J. Mech. Des.
1050-0472,
113
(
4
), pp.
363
371
.
22.
González-Palacios
,
M. A.
, and
Angeles
,
J.
, 1993,
Cam Synthesis
,
Kluwer Academic
,
Dordrecht
.
23.
Ramahi
,
A.
, and
Tokad
,
Y.
, 1998, “
On the Kinematics of Three-Link Spatial Cam Mechanisms
,”
Meccanica
0025-6455,
33
(
4
), pp.
349
361
.
24.
Fisher
,
I. S.
, 1999,
Dual-Number Methods in Kinematics, Statics and Dynamics
,
CRC Press
,
New York
.
25.
Phillips
,
J.
, 1990,
Freedom in Machinery
,
Cambridge University Press
,
Cambridge
, Vols.
1–2
.
26.
Ball
,
R. S.
, 1998,
A Treatise on the Theory of Screw
,
Cambridge University Press
,
Cambridge
.
27.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
28.
Veldkamp
,
G. R.
, 1976, “
On the Use of Dual Number, Vectors and Matrices in Instantaneous Spatial Kinematics
,”
Mech. Mach. Theory
0094-114X,
11
(
2
), pp.
141
156
.
29.
Chevallier
,
D. P.
, 1991, “
Lie Algebras, Modules, Dual Quaternions and Algebraic Methods in Kinematics
,”
Mech. Mach. Theory
0094-114X,
26
(
6
), pp.
613
627
.
30.
Angeles
,
J.
, 1994, “
The Application of Dual Algebra to Kinematic Analysis
,”
J.
Angeles
and
E.
Zakhariev
, eds.
Computational Methods in Mechanisms
,
Kluwer Academic
,
Dordrecht
, pp.
101
108
.
31.
Fisher
,
I. S.
, 1998, “
The Dual Angle and Axis of a Screw Motion
,”
Mech. Mach. Theory
0094-114X,
33
(
3
), pp.
331
340
.
32.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2004, “
On the Basis Screws and Screw Systems of Point-Line and Line Displacements
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
56
62
.
33.
Hsia
,
L. M.
, and
Yang
,
A. T.
, 1981, ”
On the Principle of Transference in Three-Dimensional Kinematics
,”
ASME J. Mech. Des.
1050-0472,
103
(
3
), pp.
652
656
.
34.
Rico-Martínez
,
J. M.
, and
Duffy
,
J.
, 1993, “
The Principle of Transference: History, Statements and Proof
,”
Mech. Mach. Theory
0094-114X,
28
(
1
), pp.
165
177
.
35.
Reuleaux
,
F.
, 1963,
The Kinematics of Machinery
, English version made by
A. B. W.
Kennedy
,
Dover
,
New-York
.
36.
Beggs
,
J. S.
, 1959, “
Ein Beitrag zur Analyse Räumlicher Mechanismen
,” Doctoral dissertation, Technische Hochschule Hannover, Hannover.
37.
Phillips
,
J. R.
, and
Hunt
,
K. H.
, 1964, “
On the Theorem of Three Axes in the Spatial Motion of Three Bodies
,”
Australian J. Appl. Sci.
,
15
, pp.
267
287
.
38.
Pottmann
,
H.
, and
Wallner
,
J.
, 2001,
Computational Line Geometry
,
Springer
,
Berlin
.
You do not currently have access to this content.