We present a deterministic non-gradient based approach that uses robustness measures in multi-objective optimization problems where uncontrollable parameter variations cause variation in the objective and constraint values. The approach is applicable for cases that have discontinuous objective and constraint functions with respect to uncontrollable parameters, and can be used for objective or feasibility robust optimization, or both together. In our approach, the known parameter tolerance region maps into sensitivity regions in the objective and constraint spaces. The robustness measures are indices calculated, using an optimizer, from the sizes of the acceptable objective and constraint variation regions and from worst-case estimates of the sensitivity regions’ sizes, resulting in an outer-inner structure. Two examples provide comparisons of the new approach with a similar published approach that is applicable only with continuous functions. Both approaches work well with continuous functions. For discontinuous functions the new approach gives solutions near the nominal Pareto front; the earlier approach does not.

1.
Taguchi
,
G.
, 1978, “
Performance Analysis Design
,”
Int. J. Prod. Res.
0020-7543,
16
, pp.
521
530
.
2.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N. A.
, 1993, “
General Approach to Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
74
80
.
3.
Yu
,
J. C.
, and
Ishii
,
K.
, 1998, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
196
202
.
4.
Jung
,
D. H.
, and
Lee
,
B. C.
, 2002, “
Development of a Simple and Efficient Method for Robust Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
2201
2215
.
5.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
385
394
.
6.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, “
Quality Utility-A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
179
187
.
7.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
557
564
.
8.
Choi
,
K. K.
,
Tu
,
J.
, and
Park
,
Y. H.
, 2001, “
Extensions of Design Potential Concept for Reliability-Based Design Optimization to Nonsmooth and Extreme Cases
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
335
350
.
9.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
221
232
.
10.
Ray
,
T.
, 2002, “
Constrained Robust Optimal Design using a Multiobjective Evolutionary Algorithm
,” in
Congress on Evolutionary Computation (CEC’2002)
,
IEEE Service Center
,
Piscataway, NJ
, Vol.
1
, pp.
419
424
.
11.
Emch
,
G.
, and
Parkinson
,
A.
, 1993, “
Using Engineering Models to Control Variability: Feasibility robustness for Worst-Case Tolerances
,”
ASME Advances in Design Automation
,
65
(
1
), pp.
419
418
.
12.
Parkinson
,
A.
, and
Emch
,
G.
, 1994, “
Robust Optimal Design for Worst-Case Tolerances
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1019
1025
.
13.
Balling
,
R. J.
,
Free
,
J. C.
, and
Parkinson
,
A. R.
, 1986, “
Consideration of Worst-Case Manufacturing Tolerances in Design Optimization
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
438
441
.
14.
Sundaresan
,
S.
,
Ishii
,
K.
, and
Houser
,
D.
, 1992, “
Design Optimization for Robustness Using Performance Simulation Programs
,”
Eng. Optimiz.
0305-215X,
20
, pp.
163
178
.
15.
Sunderasan
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
, 1993, “
A Robust Optimization Procedure with Variation on Design Variables and Constraints
,”
Advances in Design Automation
,
65
(
1
), pp.
379
386
.
16.
Zhu
,
J.
, and
Ting
,
K. L.
, 2001, “
Performance Distribution Analysis and Robust Design
.”
ASME J. Mech. Des.
1050-0472,
123
, pp.
11
17
.
17.
Lee
,
K.
, and
Park
,
G.
, 2001, “
Robust Optimization Considering Tolerances of Design Variables
,”
Comput. Struct.
0045-7949,
79
, pp.
77
86
.
18.
Su
,
J.
, and
Renaud
,
J. E.
, 1997, “
Automatic Differentiation in Robust Optimization
,”
AIAA J.
0001-1452,
35
(
6
), pp.
1072
1079
.
19.
Messac
,
A.
, and
Yahaya
,
A. I.
, 2002, “
Multiobjective Robust Design Using Physical Programming
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
5
), pp.
357
371
.
20.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
1
), pp.
50
60
.
21.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
A Feasibility Robust Optimization Method using a Sensitivity Region Concept
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
858
868
.
22.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
On a Combined Multi-Objective and Feasibility Robustness Method for Design Optimization
,”
CD-ROM Proceedings of the tenth AIAA/ISSMO MDO
,
Albany, NY
, September.
23.
Gunawan
,
S.
, 2004, “
Parameter Sensitivity Measures for Single Objective, Multi-Objective and Feasibility Robust Design Optimization
,” Ph.D. dissertation, University of Maryland, College Park, May.
24.
Miettinen
,
K. M.
, 1999,
Nonlinear Multiobjective Optimization
,
Kluwer Academic
,
Boston
.
25.
Deb
,
K.
, 2001,
Multiobjective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
26.
Kurapati
,
A.
,
Azarm
,
S.
, and
Wu
,
J.
, 2002, “
Constraint Handling Improvements for Multi-Objective Genetic Algorithms
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
3
), pp.
204
213
.
27.
Kirsh
,
U.
, 1981,
Optimal Structural Design
,
McGraw-Hill
,
NY
.
You do not currently have access to this content.