A formulation for the automatic synthesis of two-dimensional bistable, compliant periodic structures is presented, based on standard methods for topology optimization. The design space is parametrized using nonlinear beam elements and a ground structure approach. A performance criterion is suggested, based on characteristics of the load-deformation curve of the compliant structure. A genetic algorithm is used to find candidate solutions. A numerical implementation of this methodology is discussed and illustrated using simple examples.
Issue Section:
Research Papers
1.
Wang
, Y. C.
, and Lakes
, R. S.
, 2004, “Extreme Stiffness Systems Due to Negative Stiffness Elements
,” Am. J. Phys.
0002-9505, 72
(1
), pp. 40
–50
.2.
Jensen
, B. D.
, Howell
, L. L.
, and Salmon
, L. G.
, 1999, “Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,” ASME J. Mech. Des.
1050-0472, 121
, pp. 416
–423
.3.
Jensen
, B. D.
, Parkinson
, M. B.
, Kurabayashi
, K.
, Howell
, L. L.
, and Baker
, M. S.
, 2001, “Design Optimization of a Fully-Compliant Bistable Micro-Mechanism
,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE2001/MEMS-23852
, New York.4.
Jensen
, B. D.
, and Howell
, L. L.
, 2003, “Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,” ASME J. Mech. Des.
1050-0472, 125
, pp. 701
–708
.5.
Jensen
, B. D.
, and Howell
, L. L.
, 2004, “Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,” ASME J. Mech. Des.
1050-0472, 126
(4
), pp. 657
–666
.6.
Masters
, N. D.
, and Howell
, L. L.
, 2003, “A Self-Retracting Fully-Compliant Bistable Micromechanism
,” J. Microelectromech. Syst.
1057-7157, 12
, pp. 273
–280
.7.
Masters
, N. D.
, and Howell
, L. L.
, 2005, “A Three Degree-of-Freedom Model for Self-Retracting Fully Compliant Bistable Micromechanisms
,” ASME J. Mech. Des.
1050-0472, 127
(4
), pp. 739
–744
.8.
King
, C.
, and Campbell
, M. I.
, 2004, “On the Design Synthesis of Multistable Equilibrium Systems
,” Proceedings of the International Design Engineering and Technical Conference
, Salt Lake City, Utah.9.
Howell
, L. L.
, 2001, Compliant Mechanisms
, Wiley
, New York.10.
Ananthasuresh
, G. K.
, and Howell
, L. L.
, 2005, “Mechanical Design of Compliant Microsystems—A Perspective and Prospects
,” ASME J. Mech. Des.
1050-0472, 127
(4
), pp. 736
–738
.11.
Ananthasuresh
, G. K.
, and Kota
, S.
, 1995, “Designing Compliant Mechanisms
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 117
(11
) pp. 93
–96
.12.
Sigmund
, O.
, 1997, “On the Design of Compliant Mechanisms Using Topology Optimization
,” Mech. Struct. Mach.
0890-5452, 25
, pp. 493
–524
.13.
Frecker
, M. I.
, Ananthasuresh
, G. K.
, Nishiwaki
, S.
, Kikuchi
, N.
, and Kota
, S.
, 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,” ASME J. Mech. Des.
1050-0472, 119
(2
) pp. 238
–245
.14.
Tai
, K.
, and Chee
, T. H.
, 2000, “Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,” ASME J. Mech. Des.
1050-0472, 122
(4
), pp. 560
–566
.15.
Bendsøe
, M. P.
, and Kikuchi
, N.
, 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 71
, pp. 197
–224
.16.
Bruns
, T. E.
, Sigmund
, O.
, and Tortorelli
, D. A.
, 2002, “Numerical Methods for the Topology Optimization of Structures that Exhibit Snap-Through
,” Int. J. Numer. Methods Eng.
0029-5981, 55
, pp. 1215
–1237
.17.
Saxena
, A.
, and Ananthasuresh
, G. K.
, 2001, “Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,” ASME J. Mech. Des.
1050-0472, 123
(1
), pp. 33
–42
.18.
Joo
, J. Y.
, and Kota
, S.
, 2004, “Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,” Mech. Based Des. Struct. Mach.
1539-7734, 32
(1
), pp. 17
–38
.19.
Maddisetty
, H.
, and Frecker
, M.
, 2004, “Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,” ASME J. Mech. Des.
1050-0472, 126
(6
), pp. 975
–983
.20.
Saxena
, A.
, 2005, “Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,” ASME J. Mech. Des.
1050-0472, 127
(4
), pp. 745
–752
.21.
Qiu
, J.
, Lang
, J.
, and Slocum
, A. H.
, 2004, “A Curved-Beam Bistable Mechanism
,” J. Microelectromech. Syst.
1057-7157, 13
(2
), pp. 137
–146
.22.
Crisfield
, M. A.
, 1991, Non-Linear Finite Element Analysis of Solids and Structures
, Wiley
, Chichester, Vol. 1
.23.
Dorn
, W. C.
, Gomory
, R. E.
, and Greenberg
, H. J.
, 1964, “Automatic Design of Optimal Structures
,” J. Mec.
0021-7832, 3
, pp. 25
–52
.24.
Bendsøe
, M.
, Ben Tal
, A.
, and Zowe
, J.
, 1994, “Optimization Methods for Truss Geometry and Topology Design
,” Struct. Optim.
0934-4373, 7
, pp. 141
–159
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.