A formulation for the automatic synthesis of two-dimensional bistable, compliant periodic structures is presented, based on standard methods for topology optimization. The design space is parametrized using nonlinear beam elements and a ground structure approach. A performance criterion is suggested, based on characteristics of the load-deformation curve of the compliant structure. A genetic algorithm is used to find candidate solutions. A numerical implementation of this methodology is discussed and illustrated using simple examples.

1.
Wang
,
Y. C.
, and
Lakes
,
R. S.
, 2004, “
Extreme Stiffness Systems Due to Negative Stiffness Elements
,”
Am. J. Phys.
0002-9505,
72
(
1
), pp.
40
50
.
2.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
, 1999, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
416
423
.
3.
Jensen
,
B. D.
,
Parkinson
,
M. B.
,
Kurabayashi
,
K.
,
Howell
,
L. L.
, and
Baker
,
M. S.
, 2001, “
Design Optimization of a Fully-Compliant Bistable Micro-Mechanism
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE2001/MEMS-23852
,
New York.
4.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2003, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
701
708
.
5.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
657
666
.
6.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2003, “
A Self-Retracting Fully-Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
273
280
.
7.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2005, “
A Three Degree-of-Freedom Model for Self-Retracting Fully Compliant Bistable Micromechanisms
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
739
744
.
8.
King
,
C.
, and
Campbell
,
M. I.
, 2004, “
On the Design Synthesis of Multistable Equilibrium Systems
,”
Proceedings of the International Design Engineering and Technical Conference
,
Salt Lake City, Utah.
9.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
, New York.
10.
Ananthasuresh
,
G. K.
, and
Howell
,
L. L.
, 2005, “
Mechanical Design of Compliant Microsystems—A Perspective and Prospects
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
736
738
.
11.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
(
11
) pp.
93
96
.
12.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
, pp.
493
524
.
13.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
(
2
) pp.
238
245
.
14.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
1050-0472,
122
(
4
), pp.
560
566
.
15.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
16.
Bruns
,
T. E.
,
Sigmund
,
O.
, and
Tortorelli
,
D. A.
, 2002, “
Numerical Methods for the Topology Optimization of Structures that Exhibit Snap-Through
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
1215
1237
.
17.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
33
42
.
18.
Joo
,
J. Y.
, and
Kota
,
S.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
19.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
(
6
), pp.
975
983
.
20.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
745
752
.
21.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A. H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
1057-7157,
13
(
2
), pp.
137
146
.
22.
Crisfield
,
M. A.
, 1991,
Non-Linear Finite Element Analysis of Solids and Structures
,
Wiley
, Chichester, Vol.
1
.
23.
Dorn
,
W. C.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
, 1964, “
Automatic Design of Optimal Structures
,”
J. Mec.
0021-7832,
3
, pp.
25
52
.
24.
Bendsøe
,
M.
,
Ben Tal
,
A.
, and
Zowe
,
J.
, 1994, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Optim.
0934-4373,
7
, pp.
141
159
.
You do not currently have access to this content.