The design of spiral bevel gears in aeronautical gear boxes requires very precise and realistic numerical simulations. One important criteria is the loaded transmission error (LTE) that gear designers attempt to reduce at the nominal torque. This paper presents a numerical tool that simulates the loaded meshing of spiral bevel gears and experimental tests carried out on a real helicopter gear box. Tooth profile is defined by the Gleason cutting process and tooth bending effects and contact deformations are both taken into account. The bending effect computation uses a three-dimensional finite element model, while the contact deformations are obtained by using Boussinesq’s theory. Experimental measurements of the LTE were performed using magnetic and optical encoders rigidly connected with the pinion and gear shafts, giving access to the records of the instantaneous angular positions. The numerical simulations fit quite well the experimental results.

1.
Vijayakar
,
S. M.
,
Busby
,
H. R.
, and
Houser
,
D. R.
, 1987, “
Finite Element Analysis of Quasi-Prismatic Bodies Using Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
8
), pp.
1461
1477
.
2.
Ambruosi
,
G.
,
Bianco
,
G.
,
Della Corte
,
O.
, et al.
, 2000, “
FEM Model for the Tooth Root Bending Stress Analysis of Mating Helical Gears
,”
Proceedings of DETC’00
,
Baltimore
, Maryland, September 10–13 (CD-ROM) DETC2000/PTG-14359.
3.
Fuentes
,
A.
,
Litvin
,
F. L.
,
Mullins
,
R.
,
Woods
,
R.
, and
Handschuh
,
R. F.
, 2002, “
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
524
532
4.
Handschuh
,
R. F.
, and
Bibel
,
G. D.
, 1999, “
Experimental and Analytical Study of Aerospace Spiral Bevel Gear Tooth Fillet Stresses
,”
J. Mech. Des.
1050-0472,
121
(
4
), pp.
565
572
.
5.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Fan
,
Q.
, et al.
, 2002, “
Computerized Design, Simulation of Meshing, and Contact and Stress Analysis of Face-Milled Formate Generated Spiral Bevel Gears
,”
Mech. Mach. Theory
0094-114X,
37
(
5
), pp.
441
459
.
6.
Icard
,
Y.
, 2000, “
Engrenage Spiro-Conique: Modélisation Sous Charge Appliquée au Domaine Aéronautique
,” thèse génie mécanique, Institut National des Sciences Appliquées de Lyon, Lyon, France.
7.
Kim
,
H. C.
, 1996, “
Etude des Charges et des Contraintes dans les Engrenages Cylindriques avec Voile. Simulation Numérique par la Méthode des Prismes Finis
,” thèse génie mécanique, Institut National des Sciences Appliquées de Lyon, Lyon, France.
8.
Jacquin
,
C. Y.
, 2001, “
Modélisation et Optimisation du Comportement Sous-Charge des Engrenages face
,” thèse génie mécanique, Institut National des Sciences Appliquées de Lyon, Lyon, France.
9.
Madrosky
,
D.
, 1987, “
Conception des Engrenages Spiro-Coniques: Géométrie et Simulation du Comportement
,” thèse génie mécanique, Institut National des Sciences Appliquées de Lyon, Lyon, France.
10.
Shuting
,
Li.
, 2002, “
Gear Contact Model and Loaded Tooth Contact Analysis of a Three-Dimensional, Thin-Rimmed Gear
,”
J. Mech. Des.
1050-0472,
124
, pp.
511
517
11.
Conry
,
T. F.
, and
Seireg
,
A. A.
, 1971, “
Mathematical Programming Method for Design of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
38
(
2
), pp.
387
392
.
12.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Icard
,
Y.
, 2004, “
Fast Three-Dimensional Quasi-Static Analysis of Helical Gears Using the Finite Prism Method
,”
ASME J. Mech. Des.
1050-0472,
126
(
6
), pp.
1082
1088
.
13.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Icard
,
Y.
, 2005, “
Analysis and Optimization of the Loaded Meshing of Face Gears
,”
ASME J. Mech. Des.
1050-0472,
127
(
1
), pp.
135
143
14.
Wang
,
X.
, and
Morrish
,
L.
, 2003, “
Predictions of Wear and Transmission Errors of Cylindrical Worm Gears
,”
Proceedings Power Transmission and Gearing, DETC’03
, September,
ASME
, Chicago, Vol.
4
, pp.
869
874
.
15.
Gleason
, 1985,
Applied Gear Engineering Course: Bevel Gear and Hypoid Analysis
.
Rochester: Gleason Works
,
Rochester, NY
.
16.
Remond
,
D.
, 1998, “
Practical Performances of High-Speed Measurement of Gear Transmission Error or Torsional Vibrations with Optical Encoders
,”
Meas. Sci. Technol.
0957-0233,
9
, pp.
347
353
.
17.
Remond
,
D.
, and
Play
,
D.
, 1999, “
Advantages and Perspectives of Gear Transmission Error Measurement with Optical Encoders
,”
Proceeding of 4th World Congress on Gearing and Power Transmission, Paris, March 16–18
MCI
, Paris, pp.
1789
1802
.
18.
Gosselin
,
C.
,
Guertin
,
T.
,
Remond
,
D.
, and
Jean
,
Y.
, 2000, “
Simulation and Experimental Measurement of the Transmission Error of Real Hypoid Gears under Load
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
109
122
You do not currently have access to this content.