In this investigation a robotic system’s dynamic performance is optimized for high reliability under uncertainty. The dynamic capability equations (DCE) allow designers to predict the dynamic performance of a robotic system for a particular configuration and reference point on the end effector (i.e., point design). Here the DCE are used in conjunction with a reliability-based design optimization (RBDO) strategy in order to obtain designs with robust dynamic performance with respect to the end-effector reference point. In this work a unilevel performance measure approach is used to perform RBDO. This is important for the reliable design of robotic systems in which a solution to the DCE is required for each constraint call. The method is illustrated on a robot design problem.

1.
Yoshikawa
,
T.
, 1985, “
Dynamic manipulability of Robot Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
, St. Louis, MO, pp.
1033
1038
.
2.
Graettinger
,
T. J.
, and
Krogh
,
B. H.
, 1988, “
The Acceleration Radius: A Global Performance Measure for Robotic Manipulators
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
1
), pp.
60
69
.
3.
Kim
,
Y.
, and
Desa
,
S.
, 1993, “
The Definition, Determination, and Characterization of Acceleration Sets for Spatial Manipulators
,”
Int. J. Robot. Res.
0278-3649,
12
(
6
), pp.
572
587
.
4.
Bowling
,
A.
, and
Khatib
,
O.
, 2005, “
The Dynamic Capability Equations: A New Tool for Analyzing Manipulator Dynamic Performance
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
1
), pp.
115
123
.
5.
Kazerounian
,
K.
, and
Rastegar
,
J.
, 1992, “
Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements
,”
Proceedings of the ASME Design Engineering Technical Conference, Flexible Mechanisms, Dynamics, and Analysis
, Scottsdale, AZ, September 13–16, Vol.
47
, pp.
271
275
.
6.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1996, “
A Local Measure of Fault Tolerance for Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
4
), pp.
543
552
.
7.
Hassan
,
M.
, and
Notash
,
L.
, 2005, “
Design Modification of Parallel Manipulators for Optimum Fault Tolerance to Joint Jam
,”
Mech. Mach. Theory
0094-114X,
40
(
5
), pp.
559
577
.
8.
Bonivento
,
C.
,
Gentili
,
L.
, and
Paoli
,
A.
, 2004, “
Internal Model Based Fault Tolerant Control of a Robot Manipulator
,”
Proceedings of the IEEE Conference on Decision and Control
, Vol.
5
, pp.
5260
5265
.
9.
Bhatti
,
P. K.
, and
Rao
,
S. S.
, 1988, “
Reliability Analysis of Robot Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
(
2
), pp.
175
181
.
10.
Khatib
,
O.
, and
Agrawal
,
S.
, 1989, “
Isotropic and Uniform Inertial and Acceleration Characteristics: Issues in the Design of Redundant Manipulators
,”
Proceedings of the IUTAM/IFAC Symposium on Dynamics of Controlled Mechanical Systems
, Zurich, Switzerland.
11.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
, 1991, “
Reformulation of Dynamic Manipulability Ellipsoid for Robotic Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
3
, Sacramento, CA, pp.
2192
2197
.
12.
Chiacchio
,
P.
, 2000, “
A New Dynamic Manipulability Ellipsoid for Redundant Manipulators
,”
Robotica
0263-5747,
18
, pp.
381
387
.
13.
Doty
,
K. L.
,
Melchiorri
,
C.
,
Schwartz
,
E. M.
, and
Bonivento
,
C.
, 1995, “
Robot Manipulability
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
3
), pp.
462
468
.
14.
Vertut
,
J.
,
Papot
,
L.
,
Rossignol
,
C.
, and
Tiret
,
A.
, 1973, “
Contribution to Analyse Manipulator Morphology Coverage and Dexterity
,”
Proceedings of the 1st CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators
(Romansy 1), Kupari, Yugoslavia,
Springer
, Berlin, pp.
277
302
.
15.
Bowling
,
A.
, and
Kim
,
C.
, 2006, “
Velocity Effects on Robotic Manipulator Dynamic Performance
,”
ASME J. Mech. Des.
1050-0472,
128
(
6
), pp.
1236
1245
.
16.
Bowling
,
A.
, and
Khatib
,
O.
, 2002, “
Actuator Selection for Desired Dynamic Performance
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Lausanne, Switzerland, Vol.
2
, pp.
1966
1973
.
17.
Bowling
,
A.
, and
Khatib
,
O.
, 2003, “
The Dynamic Loading Criteria in Actuator Selection for Desired Dynamic Performance
,”
Adv. Rob.
0169-1864,
17
(
7
), pp.
641
656
.
18.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
, New York.
19.
Agarwal
,
H.
, and
Renaud
,
J. E.
, 2004, “
A Unilevel Method for Reliability Based Design Optimization
,”
Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures
, Structural Dynamics, and Materials Conference, AIAA-2004-2029, Palm Springs, CA, April 19–22.
20.
Choi
,
K. K.
,
Youn
,
B. D.
, and
Yang
,
R.
, 2001, “
Moving Least Square Method for Reliability-Based Design Optimization
,”
Proceedings of the 4th World Congress of Structural and Multidisciplinary Optimization
, Dalian, China, June 4–8.
You do not currently have access to this content.