Deterministic optimal designs that are obtained without taking into account uncertainty/variation are usually unreliable. Although reliability-based design optimization accounts for variation, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. After the fundamentals of possibility theory and fuzzy measures are described, a double-loop, possibility-based design optimization algorithm is presented where all design constraints are expressed possibilistically. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. In order to reduce the high computational cost, a sequential algorithm for possibility-based design optimization is presented. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. Two examples demonstrate the accuracy and efficiency of the proposed sequential algorithm.

1.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
557
564
.
2.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2007, “
Safety—Factor Based Approach for Probabilistic—Based Design Optimization
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Seattle, WA
.
3.
Choi
,
K. K.
, and
Youn
,
B. D.
, 2001, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
4.
Lee
,
J. O.
,
Yang
,
Y. O.
, and
Ruy
,
W. S.
, 2002, “
A Comparative Study on Reliability Index and Target Performance Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
0045-7949,
80
, pp.
257
269
.
5.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC2004/DAC-57255.
6.
Bowling
,
A. P.
,
Renaud
,
J. E.
,
Newkirk
,
J. T.
,
Patel
,
N. M.
, and
Agarwal
,
H.
, 2007, “
Reliability-Based Design Optimization of Robotic System Dynamic Performance
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
449
454
.
7.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2007, “
Reliability Optimization With Mixed Continuous-Discrete Random Variables and Parameters
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
158
165
.
8.
Chan
,
K.-Y.
,
Skerlos
,
S. J.
, and
Papalambros
,
P. Y.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
140
149
.
9.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
Versatile Formulation for Multiobjective Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
1217
1226
.
10.
Oberkampf
,
W.
,
Helton
,
J.
, and
Sentz
,
K.
, 2001, “
Mathematical Representations of Uncertainty
,”
AIAA Non-Deterministic Approaches Forum
,
Seattle, WA
, pp.
16
19
, AIAA Paper No. 2001-1645.
11.
Klir
,
G. J.
, and
Yuan
,
B.
, 1995,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Klir
,
G. J.
, and
Filger
,
T. A.
, 1988,
Fuzzy Sets, Uncertainty, and Information
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Dubois
,
D.
, and
Prade
,
H.
, 1988,
Possibility Theory
,
Plenum
,
New York
.
14.
Moore
,
R. E.
, 1966,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Information and Control
,
8
, pp.
338
353
.
16.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
, 2001, “
Uncertainty in Mechanics Problems—Interval-Based Approach
,”
J. Eng. Mech.
0733-9399,
127
(
6
), pp.
557
566
.
17.
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
, 2002, “
Efficient Estimation of Structural Reliability for Problems With Uncertain Intervals
,”
Comput. Struct.
0045-7949,
80
, pp.
1103
1112
.
18.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design With a Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1068
1076
.
19.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
465
472
.
20.
Gu
,
X.
,
Renaud
,
J. E.
, and
Batill
,
S. M.
, 1998, “
An Investigation of Multidisciplinary Design Subject to Uncertainties
,” 1998,
Seventh AIAA/USAF/NASA/ISSMO Multidisciplinary Analysis & Optimization Symposium
,
St. Louis, MO
.
21.
Elishakoff
,
I. E.
,
Haftka
,
R. T.
, and
Fang
,
J.
, 1994, “
Structural Design Under Bounded Uncertainty—Optimization With Anti-Optimization
,”
Comput. Struct.
0045-7949,
53
, pp.
1401
1405
.
22.
Lombardi
,
M.
, and
Haftka
,
R. T.
, 1998, “
Anti-Optimization Technique for Structural Design Under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
157
, pp.
19
31
.
23.
Du
,
X.
, and
Chen
,
W.
, 2000, “
An Integrated Methodology for Uncertainty Propagation and Management in Simulation-Based Systems Design
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1471
1478
.
24.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2005, “
Reliability Estimation With Insufficient Data Based on Possibility Theory
,”
AIAA J.
0001-1452,
43
(
8
), pp.
1696
1705
.
25.
Choi
,
K. K.
,
Du
,
L.
, and
Youn
,
B. D.
, 2004, “
A New Fuzzy Analysis Method for Possibility-Based Design Optimization
,”
Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Paper No. AIAA 2004-4585.
26.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
386
394
.
27.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
225
233
.
28.
Ross
,
T. J.
, 1995,
Fuzzy Logic with Engineering Applications
,
McGraw-Hill
,
New York
.
29.
Zadeh
,
L. A.
, 1978, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
0165-0114,
1
, pp.
3
28
.
30.
Akpan
,
U. O.
,
Rushton
,
P. A.
, and
Koko
,
T. S.
, 2002, “
Fuzzy Probabilistic Assessment of the Impact of Corrosion on Fatigue of Aircraft Structures
,” Paper No. AIAA-2002-1640.
31.
Dong
,
W.
, and
Shah
,
H. C.
, 1987, “
Vertex Method for Computing Functions of Fuzzy Variables
,”
Fuzzy Sets Syst.
0165-0114,
24
, pp.
65
78
.
32.
Rao
,
S. S.
, and
Sawyer
,
J. P.
, 1987, “
A Fuzzy Finite Element Approach for the Analysis of Imprecisely Defined Systems
,”
AIAA J.
0001-1452,
33
, pp.
2264
2370
.
33.
Lewis
,
K.
, and
Mistree
,
F.
, 1997, “
Collaborative, Sequential and Isolated Decisions in Design
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC1997/DTM-3883.
You do not currently have access to this content.