This paper deals with the problem of automatic fairing (or fine-tuning) of two-parameter rational B-spline spherical and spatial motions. The results presented in this paper extend the previous results on fine-tuning of one-parameter rational B-spline motions. A dual quaternion representation of spatial displacements is employed and the problem of fairing two-parameter motions is studied as a surface fairing problem in the space of dual quaternions. By combining surface fairing techniques from the field of computer aided geometric design with the computer aided synthesis of freeform rational motions, smoother (C3 continuous) two-parameter rational B-spline motions are generated. Several examples are presented to illustrate the effectiveness of the proposed method. Techniques for motion smoothing have important applications in the Cartesian motion planning, camera motion synthesis, and spatial navigation in virtual reality systems. In particular, smoother two-parameter freeform motions have applications in the development of a kinematic based approach to geometric shape design and in five-axis NC tool path planning.

1.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North Holland
,
Amsterdam
.
2.
Shoemake
,
K.
, 1985, “
Animating Rotation With Quaternion Curves
,”
Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM
,
New York, NY
, pp.
245
254
.
3.
Nielson
,
G. M.
, and
Heiland
,
R. W.
, 1992, “
Animated Rotations Using Quaternion and Splines on a 4D Sphere
,”
Programmirovanie
(Russia), Springer-Verlag, pp. 17–27; English edition,
Programming and Computer Software
, Plenum, New York, Vol.
18
, pp.
145
154
.
4.
Kim
,
M. S.
, and
Nam
,
K. W.
, 1995, “
Interpolating Solid Orientations With Circular Blending Quaternion Curves
,”
Comput.-Aided Des.
0010-4485,
27
(
5
), pp.
385
398
.
5.
Kim
,
M.-J.
,
Kim
,
M.-S.
, and
Shin
,
S. Y.
, 1995, “
A C2 Continuous B-Spline Quaternion Curve Interpolating a Given Sequence of Solid Orientations
,”
Proceedings of the Computer Animation, Proceedings of the Computer Animation
,
IEEE Computer Society
,
Washington, DC
, pp.
19
21
.
6.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Geometric Construction of Bezier Motions
,”
ASME J. Mech. Des.
1050-0472,
116
(
3
), pp.
749
755
.
7.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Computer-Aided Geometric Design of Motion Interpolants
,”
ASME J. Mech. Des.
1050-0472,
116
(
3
), pp.
756
762
.
8.
Purwar
,
A.
, and
Ge
,
Q. J.
, 2005, “
On the Effect of Dual Weights in Computer Aided Design of Rational Motions
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
967
972
.
9.
Juttler
,
B.
, and
Wagner
,
M. G.
, 1996, “
Computer-Aided Design with Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
1050-0472,
118
(
2
), pp.
193
201
.
10.
Röschel
,
O.
, 1998, “
Rational Motion Design—A Survey
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
169
178
.
11.
Purwar
,
A.
, 2005, “
Design and Fine Tuning of One- and Two-Parameter Rational Motion
,” Ph.D. thesis, State University of New York at Stony Brook, Stony Brook, NY.
12.
Srinivasan
,
L. N.
, and
Ge
,
Q. J.
, 1998, “
Fine Tuning of Rational B-Spline Motions
,”
ASME J. Mech. Des.
1050-0472,
120
(
1
), pp.
46
51
.
13.
Fang
,
Y. C.
,
Hsieh
,
C. C.
,
Kim
,
M. J.
,
Chang
,
J. J.
, and
Woo
,
T. C.
, 1998, “
Real Time Motion Fairing With Unit Quaternions
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
191
198
.
14.
Lee
,
J.
, and
Shin
,
S.
, 1996, “
Motion Fairing
,”
Proceedings Computer Animation ’96
, pp.
136
143
.
15.
Kim
,
M. J.
,
Hsieh
,
C. C.
,
Wang
,
M. E.
,
Wang
,
C. K.
,
Fang
,
Y. C.
, and
Woo
,
T. C.
, 1996, “
Noise Smoothing for VR Equipment in the Quaternion Space
,”
Proceedings of the Virtual Reality in Manufacturing Research and Education
.
16.
Lee
,
J.
, and
Shin
,
S.
, 2002, “
General Construction of Time-Domain Filters for Orientation Data
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
8
(
2
), pp.
119
128
.
17.
Hsieh
,
C. C.
, 2002, “
Motion Smoothing Using Wavelets
,”
J. Manuf. Sci. Eng.
1087-1357,
35
(
2
), pp.
157
169
.
18.
Hsieh
,
C. C.
, 2001, “
B-Spline Wavelet-Based Motion Smoothing
,”
Comput. Ind. Eng.
0360-8352,
41
(
1
), pp.
59
76
.
19.
Hsieh
,
C. C.
, and
Chang
,
T. Y.
, 2003, “
Motion Fairing Using Genetic Algorithms
,”
Comput.-Aided Des.
0010-4485,
35
(
8
), pp.
739
749
.
20.
Ge
,
Q. J.
, and
Sirchia
,
M.
, 1999, “
Computer Aided Geometric Design of Two-Parameter Freeform Motions
,”
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
502
506
.
21.
Ge
,
Q. J.
, 1996, “
Kinematics-Driven Geometric Modeling: A Framework for Simultaneous Tool-Path Generation and Sculptured Surface Design
,”
IEEE Robotics and Automation Conference
,
Minneapolis
,
MN
, Vol.
2
, pp.
1819
1824
.
22.
Kjellander
,
J. A.
, 1983, “
Smoothing of Bicubic Parametric Surfaces
,”
Comput.-Aided Des.
0010-4485,
15
(
5
), pp.
289
293
.
23.
Nowacki
,
H.
, and
Reese
,
D.
, 1983, “
Design and Fairing Ship Surfaces
,”
Surfaces in CAGD
,
R.
Barnhill
, and
W.
Bohm
, eds.,
North-Holland
,
Amsterdam
, pp.
121
134
.
24.
Lott
,
N. J.
, and
Pullin
,
D. I.
, 1988, “
Method for Fairing B-Spline Surfaces
,”
Comput.-Aided Des.
0010-4485,
20
(
10
), pp.
597
604
.
25.
Hahmann
,
S.
, 1998, “
Shape Improvement of Surfaces
,”
Geometric Modelling, Computing
[Suppl.],
G.
Farin
,
H.
Bieri
,
G.
Brunett
, and
T.
DeRose
, eds., Vol.
13
, Springer-Verlag, pp.
135
152
.
26.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT
,
Cambridge, MA
.
27.
Ravani
,
B.
, and
Roth
,
B.
, 1984, “
Mappings of Spatial Kinematics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
3
), pp.
341
347
.
28.
Farin
,
G.
, 1996,
Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
, 4th ed.
Academic
,
New York
.
29.
Piegl
,
L.
, and
Tiller
,
W.
, 1995,
The Nurbs Book
,
Springer
,
Berlin
.
30.
Schumaker
,
L. L.
, 1981,
Spline Functions: Basic Theory
,
Wiley
,
New York
.
31.
De Boor
,
C.
, 1978,
A Practical Guide to Splines
,
Springer
,
New York
.
32.
Welch
,
W.
, and
Witkin
,
A.
, 1992, “
Variational Surface Modeling
,”
SIGGRAPH ’92
, Vol.
26
, Series 2, pp.
157
166
.
33.
Wesselink
,
W.
, and
Veltcamp
,
R. C.
, 1995, “
Interactive Design of Contrained Variational Curves
,”
Comput. Aided Geom. Des.
0167-8396,
12
(
5
), pp.
533
546
.
34.
Greiner
,
G.
, and
Seidel
,
H. P.
, 1997, “
Automatic Modeling of Smooth Spline Surfaces
,”
Winter School of Computer Graphics’97
,
N.
Magnenat-Thalmann
and
V.
Skala
, eds., pp.
665
675
.
35.
Hoschek
,
J.
, and
Lasser
,
D.
, 1993,
Fundamentals of Computer Aided Geometric Design
,
A. K. Peters
,
Wellesley, MA
.
36.
Poeschl
,
T.
, 1984, “
Detecting Surface Irregularities Using Isophotes
,”
Comput. Aided Geom. Des.
0167-8396,
1
(
2
), pp.
163
168
.
You do not currently have access to this content.