Parametric excitation of a rotating ring subject to moving time-varying stiffnesses has previously been investigated and given as closed-form expressions in the system parameters. These conditions are applied to identify ring gear parametric instabilities in a planetary gear system. Certain mesh phasing and contact ratio conditions suppress parametric instabilities, and these conditions are presented with examples.
Issue Section:
Technical Briefs
1.
Ozguven
, N. H.
, and Houser
, D. R.
, 1988, “Mathematical Models Used in Gear Dynamics
,” J. Sound Vib.
0022-460X, 121
(3
), pp. 383
–411
.2.
Parker
, R. G.
, Vijayakar
, S. M.
, and Imajo
, T.
, 2000, “Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
,” J. Sound Vib.
0022-460X, 237
(3
), pp. 435
–455
.3.
Blankenship
, W. G.
, and Kahraman
, A.
, 1996, Gear Dynamics Experiments, Part I: Characterization of Forced Response
, Proceedings of the ASME Power Transmission and Gearing Conference
, ASME
, San Diego
, pp. 373
–380
.4.
Ambarisha
, V. K.
, and Parker
, R. G.
, 2007, “Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,” J. Sound Vib.
0022-460X, 302
(3
), pp. 577
–595
.5.
Hidaka
, T.
, Terauchi
, Y.
, and Nagamura
, K.
, 1979, “Dynamic Behavior of Planetary Gear (Sixth Report: Influence of Meshing-Phase)
,” Bull. JSME
0021-3764, 22
(169
), pp. 1026
–1033
.6.
Parker
, R. G.
, 2000, “A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,” J. Sound Vib.
0022-460X, 236
(4
), pp. 561
–573
.7.
Lin
, J.
, and Parker
, R. G.
, 2002, “Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,” J. Sound Vib.
0022-460X, 249
(1
), pp. 129
–145
.8.
Seager
, D. L.
, 1975, “Conditions for the Neutralization of Excitation by the Teeth in Epicyclic Gearing
,” J. Mech. Eng. Sci.
0022-2542, 17
, pp. 293
–298
.9.
Kahraman
, A.
, and Blankenship
, W. G.
, 1994, “Planet Mesh Phasing in Epicyclic Gear-Sets
,” Proceedings of the International Gearing Conference Newcastle
, pp. 99
–104
.10.
Ambarisha
, V. K.
, and Parker
, R. G.
, 2006, “Suppression of Planet Mode Response in Planetary Gear Dynamics Through Mesh Phasing
,” ASME J. Vibr. Acoust.
0739-3717, 128
, pp. 133
–142
.11.
Kahraman
, A.
, Kharazi
, A. A.
, and Umrani
, M.
, 2003, “A Deformable Body Dynamic Analysis of Planetary Gears with Thin Rims
,” J. Sound Vib.
0022-460X, 262
, pp. 752
–768
.12.
Abousleiman
, V.
, and Velex
, P.
, 2006, “A Hybrid 3D Finite Element∕Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary∕Epicyclic Gear Sets
,” Mech. Mach. Theory
0094-114X, 41
, pp. 725
–748
.13.
Vangipuram Canchi
, S.
, and Parker
, R. G.
, 2006, “Parametric Instability of a Circular Ring Subjected to Moving Springs
,” J. Sound Vib.
0022-460X, 293
, pp. 360
—379
.14.
Vangipuram Canchi
, S.
, and Parker
, R. G.
, 2006, “Parametric Instability of a Rotating Ring with Moving, Time-Varying Springs
,” ASME J. Vibr. Acoust.
0739-3717, 128
, pp. 231
–243
.15.
Talbert
, P. B.
, 2004, “Generalized Excitation of Traveling Wave Vibration in Gears
,” American Gear Manufacturers Association Conference
, Technical Paper No. 04FTM08.16.
Parker
, R. G.
, and Lin
, J.
, 2004, “Mesh Phasing Relationships in Planetary and Epicyclic Gears
,” ASME J. Mech. Des.
1050-0472, 126
, pp. 365
–370
.17.
Johnson
, D. C.
, 1952, “Free Vibrations of a Rotating Elastic Body
,” Aircr. Eng.
0002-2667, 24
, pp. 234
–236
.18.
Endo
, M.
, Hatamura
, K.
, Sakata
, M.
, and Taniguchi
, O.
, 1984, “Flexural Vibration of a Thin Rotating Ring
,” J. Sound Vib.
0022-460X, 92
(2
), pp. 261
–272
.19.
Huang
, S. C.
, and Soedel
, W.
, 1987, “Response of Rotating Rings to Harmonic and Periodic Loading and Comparison With the Inverted Problem
,” J. Sound Vib.
0022-460X, 118
(2
), pp. 253
–270
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.