Rapid prototyping (RP) technology, such as laser engineering net shaping, can be used to fabricate heterogeneous objects with various levels of gradient variations in material composition. These objects are engineered to achieve a potentially enhanced functional performance. Past research on the design of such objects has focused on representation, modeling, and desired functional performance. However, the inherent constraints in RP processes, such as system capability and processing dwell time, lead to heterogeneous objects that may not meet the designer’s original intent. To overcome this situation, the research presented in this paper focuses on the identification and implementation of manufacturing concerns into the design process. Previous work on a 2D disk brake rotor design has shown that processing dwell time is one of the critical factors that affect manufacturability. This paper focuses on incorporating the processing time into the optimization design for manufacturing of 3D heterogeneous objects. A node-based finite element modeling technique is used for the representation and analysis. The multicriteria design problem corresponds to finding the nodal material compositions with minimized structural weight, maximized structural stiffness, and minimized extra processing time used to deposit the multimaterial subjected to stress constraints. The optimizer used in this research is a self-adaptive, real-valued evolutionary strategy, which is well suited for this type of multimodal problem. A 3D I-beam made of two materials, aluminum for lightweight and steel for better strength characteristics, is used to illustrate the trade-off between manufacturability and functionality.

1.
Gasik
,
M.
, 2003, “
Industrial Applications of FGM Solutions
,”
Mater. Sci. Forum
0255-5476,
423–425
, pp.
17
22
.
2.
Hou
,
L.
,
Pan
,
W.
,
Wang
,
R.
, and
Xie
,
D.
, 2003, “
Finite Element Analysis of Thermal Residual Stress in Ceramic Functional Gradient Material: Interface Optimization for Residual Reduction
,”
Mater. Sci. Forum
0255-5476,
423–425
, pp.
677
680
.
3.
Watari
,
F.
,
Yokoyama
,
A.
,
Omori
,
M.
,
Hirai
,
T.
,
Kondo
,
H.
,
Uo
,
M.
, and
Kawasaki
,
T.
, 2004, “
Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-Medical Application
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
893
908
.
4.
Koizumi
,
M.
, 1997, “
FGM Activities in Japan
,”
Composites, Part B
1359-8368,
28B
, pp.
1
4
.
5.
Muller
,
E.
,
Drasar
,
D.
,
Schilz
,
J.
, and
Kaysser
,
W. A.
, 2003, “
Functionally Graded Materials for Sensor and Energy Applications
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
17
39
.
6.
Ertas
,
A.
, and
Jones
,
J. C.
, 1993,
The Engineering Design Process
,
Wiley
,
New York
.
7.
Hu
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
, 2004, “
Incorporating Manufacturability Constraints Into the Design Process of Heterogeneous Objects
,”
Proceedings of SPIE in Intelligent Systems in Design and Manufacturing V, SPIE Conference
,
Philadelphia, PA
.
8.
Castle Island Co
, 2003, “
Castle Island’s Worldwide Guide to Rapid Prototyping
,” http://home.att.net/~castleisland/home.htmhttp://home.att.net/~castleisland/home.htm
10.
Griffith
,
M. L.
,
Harwell
,
L. D.
,
Romero
,
T.
,
Schlienger
,
M. E.
,
Atwood
,
C. L.
, and
Smugeresky
,
J. E.
, 1997, “
Multi-Material Processing by LENS™
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
University of Texas at Austin Publishers
, pp.
387
393
.
11.
Grugicic
,
M.
,
Hu
,
Y.
,
Fadel
,
G. M.
, and
Keicher
,
D.
, 2001, “
Optimization of the LENS Rapid Fabrication Process for In-Flight Melting of Feed Powder
,”
J. Mater. Synth. Process.
1064-7562,
9
(
5
), pp.
223
233
.
12.
Griffith
,
M. L.
,
Ensz
,
M. T.
,
Puskar
,
J. D.
,
Robino
,
C. V.
,
Brooks
,
J. A.
,
Philiber
,
J. A.
,
Smugeresky
,
J. E.
, and
Hofmeister
,
W. H.
, 2000, “
Understanding the Microstructure and Properties of Components Fabricated by Laser Engineered Net Shaping (LENS)
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
625
, pp.
9
20
.
13.
Lewis
,
G. K.
, and
Schlienger
,
E.
, 2000, “
Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition
,”
Mater. Des.
0264-1275,
21
, pp.
417
423
.
14.
Ensz
,
M. T.
,
Griffith
,
M. L.
, and
Reckaway
,
D. E.
, 2002, “
Critical Issues for Functionally Graded Material Deposition by Laser Engineered Net Shaping (LENS)
,”
Proceedings of the 2002 MPIF Laser Metal Deposition Conference
,
San Antonio, TX
.
15.
Banerjee
,
R.
,
Collins
,
P. C.
,
Genc
,
A.
, and
Fraser
,
H. L.
, 2003, “
Direct Laser Deposition of In Situ Ti-6Al-4V-TiB Composites
,”
Mater. Sci. Eng., A
0921-5093,
358
, pp.
343
349
.
16.
Banerjee
,
R.
,
Collins
,
P. C.
,
Bhattacharyya
,
D.
,
Banerjee
,
S.
, and
Fraser
,
H. L.
, 2003, “
Microstructural Evolution in Laser Deposited Compositionally Graded α∕β Titanium-Vanadium Alloys
,”
Acta Mater.
1359-6454,
51
, pp.
3277
3292
.
17.
Liu
,
W.
, and
Dupont
,
J.
, 2003, “
Fabrication of Functionally Graded TiC∕Ti Composites by Laser Engineered Net Shaping
,”
Scr. Mater.
1359-6462,
48
, pp.
1337
1342
.
18.
Pegna
,
J.
, and
Safi
,
A.
, 1998, “
CAD Modeling of Multi-Modal Structures for Free-Form Fabrication
,”
Solid Freeform Fabrication Symposium
,
D. L.
Bourell
,
J. J.
Beamen
,
H. L.
Marcus
,
R. H.
Crawford
, and
J. W.
Barlow
eds.,
Austin, TX
, The University of Texas.
19.
Kumar
,
V.
, and
Dutta
,
D.
, 1998, “
An Approach to Modeling and Representation of Heterogeneous Objects
,”
ASME J. Mech. Des.
1050-0472,
120
(
4
), pp.
659
667
.
20.
Jackson
,
T. R.
,
Liu
,
H.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
, 1999, “
Modeling and Designing Functionally Graded Material Components for Fabrication With Local Composition Control
,”
Mater. Des.
0264-1275,
20
(
2/3
), pp.
63
75
.
21.
Morvan
,
S.
, 2001, “
MMa-Rep, a Representation for Multimaterial Solids
,” Ph.D. thesis, Clemson University, Clemson, SC.
22.
Qian
,
X.
, and
Dutta
,
D.
, 2001, “
Physics Based B-Spline Heterogeneous Object Modeling
Proceedings of the ASME 2001 Design Engineering Technical Conferences
,
Pittsburgh, PA
.
23.
Neal
,
J. Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
, 2002, “
GA-Based Multi-Material Structural Optimization Using Stepwise Mesh Refinement
,”
Ninth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
.
24.
Zienkiewicz
,
O. C.
,
Irons
,
B. M.
,
Ergatoudis
,
S.
,
Ahmad
,
S.
, and
Scott
,
F. C.
, 1969, “
Isoparametric and Associated Element Families for Two and Three Dimensional Analysis
,”
Proceedings of Course on Finite Element Methods in Stress Analysis
,
I.
Holland
and
K.
Bell
, eds., Thondheim Technical University.
25.
Gürdal
,
Z.
,
Haftka
,
R. T.
, and
Hajela
,
P.
, 1998,
Design and Optimization of Laminated Composite Materials
,
Wiley-Interscience
,
New York
.
26.
Huang
,
J.
, 2000, “
Heterogeneous Component Modeling and Optimization Design for Manufacturing
,” Ph.D. thesis, Clemson University, Clemson, SC.
27.
Grujicic
,
M.
,
Cao
,
G.
, and
Fadel
,
G. M.
, 2001, “
Effective Materials Properties: Determination and Application in Mechanical Design and Optimization
,”
Journal of Materials: Design & Applications
,
215
(L4), pp.
225
234
.
28.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
29.
Yang
,
R. J.
, 1997, “
Multidiscipline Topology Optimization
,”
Comput. Struct.
0045-7949,
63
, pp.
1205
1212
.
30.
Koënig
,
O.
, and
Fadel
,
G. M.
, 1999, “
Application of Genetic Algorithms in the Design of Multi-Material Structures Manufactured in Rapid Prototyping
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
31.
Baeck
,
T.
,
Fogel
,
D. B.
, and
Michalewicz
,
Z.
, 2000,
Evolutionary Computation 1: Basic Algorithms and Operators
,
IOP
,
Bristol
.
32.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
New York
.
33.
Rechenberg
,
I.
, 1973,
Evolution Strategy: Optimization of Technical Systems According to the Principles of Biological Evolution
,
Frommann-Holzboog
,
Stuttgart
.
34.
Papadrakakis
,
M.
,
Tsompanakis
,
Y.
, and
Lagaros
,
N. D.
, 1999, “
Structural Shape Optimization Using Evolution Strategies
,”
Eng. Optimiz.
0305-215X,
31
, pp.
515
540
.
35.
Hoffmeister
,
F.
, and
Back
,
T.
, 1991, “
Genetic Algorithms and Evolution Strategies-Similarities and Differences
,” in
Parallel Problems Solving From Nature
,
H. P.
Schwefel
and
R.
Manner
, eds.,
Springer-Verlag
,
Berlin
, pp.
455
469
.
37.
Discussion with Dr.
Gill
,
David D.
, from Sandia Laboratory, Feb. 7, 2004.
You do not currently have access to this content.