In this paper a new topology of four degrees-of-freedom 3T1R fully-parallel manipulator is presented, which is defined only using lower kinematic pairs. The paper starts with a complete type synthesis of different topologies of fully-parallel manipulators that can perform the so-called Schönflies motion, based on the Theory of Groups of Displacements. After imposing some practical requirements, the different possibilities of manipulators are reduced to only one topology of fully-parallel and fully-symmetrical parallel manipulator. Then, the kinematic analysis of the manipulator is shown, including the closed-form resolution of both forward and inverse position problems, the velocity and the singularity analysis. Finally, a prototype of the manipulator is presented, which is intended to be used in pick and place applications.

1.
Huang
,
Z.
, and
Li
,
Q.
, 2002, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
(
2
), pp.
131
145
.
2.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
3.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3-dof Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
101
108
.
4.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
23
(
3
), pp.
237
245
.
5.
Fang
,
Y.
, and
Tsai
,
L.-W.
, 2004, “
Structure Synthesis of a Class of 3-dof Rotational Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
1
), pp.
117
121
.
6.
Kong
,
X.
, and
Gosselin
,
C.
, 2002, “
A Class of 3-dof Translational Parallel Manipulators With Linear Input-Output Equations
,”
Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
,
C. M.
Gosselin
and
I.
Ebert-Uphoff
, eds., pp.
25
32
.
7.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
Position Analysis of a New Family of 3-dof Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
316
322
.
8.
Callegari
,
M.
, and
Tarantini
,
M.
, 2003, “
Kinematic Analysis of a Novel Translational Platform
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
308
315
.
9.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3-dof Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
83
92
.
10.
Kong
,
X.
, and
Gosselin
,
C.
, 2005, “
Type Synthesis of 4-dof sp-Equivalent Parallel Manipulators: A Virtual-Chain Approach
,”
Proceedings of CK2005, International Workshop on Computational Kinematics
.
11.
Yang
,
T.-L.
,
Jin
,
Q.
,
Liu
,
A.-X.
,
Yao
,
F.-H.
, and
Luo
,
Y.-F.
, 2001, “
Structure Synthesis of 4-dof (3-Translation and 1-Rotation) Parallel Robot Mechanisms Based on the Units of Single-Opened-Chain
,”
Proceedings of the ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Paper No. DETC2001/DAC-21152.
12.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3t1r 4-dof Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
181
190
.
13.
Carricato
,
M.
, 2005, “
Fully Isotropic Four-Degrees-of-Freedom Parallel Mechanisms for Schoenflies Motion
,”
Int. J. Robot. Res.
0278-3649,
24
(
5
), pp.
397
414
.
14.
Fang
,
Y.
, and
Tsai
,
L.-W.
, 2002, “
Structure Synthesis of a Class of 4-dof and 5-dof Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
0278-3649,
21
(
9
), pp.
799
810
.
15.
Huang
,
Z.
, and
Li
,
Q.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Robot. Res.
0278-3649,
22
(
1
), pp.
59
79
.
16.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P.-L.
, 2007, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
1050-0472,
129
(
6
), pp.
595
601
.
17.
Hervé
,
J. M.
, 1978, “
Analyse structurelle des mécanismes par groupe des déplacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
18.
Hervé
,
J. M.
, 1994, “
The Mathematical Group Structure of the Set of Displacements
,”
Mech. Mach. Theory
0094-114X,
29
(
1
), pp.
73
81
.
19.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
719
730
.
20.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
617
624
.
21.
Angeles
,
J.
, 2005, “
The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, pp.
1017
1024
.
22.
Lee
,
C.-C.
, and
Hervé
,
J. M.
, 2005, “
On the Enumeration of Schoenflies Motion Generators
,”
Proceedings of the Ninth IFToMM International Symposium on Theory of Machines and Mechanisms
.
23.
Kong
,
X.
, and
Gosselin
,
C.
, 2006, “
Parallel Manipulators With Four Degrees of Freedom
,” U.S. Patent 6,997,669.
24.
Company
,
O.
,
Marquet
,
F.
, and
Pierrot
,
F.
, 2003, “
A New High-Speed 4-dof Parallel Robot Synthesis and Modelling Issues
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
3
), pp.
411
420
.
25.
Krut
,
S.
,
Company
,
O.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
, 2003, “
I4: A New Parallel Mechanism for Scara Motions
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1875
1880
.
26.
Krut
,
S.
,
Nabat
,
V.
,
Company
,
O.
, and
Pierrot
,
F.
, 2004, “
A High-Speed Parallel Robot for Scara Motions
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
4109
4115
.
27.
Richard
P.-L.
,
Gosselin
,
C. M.
, and
Kong
,
X.
, 2007, “
Kinematic Analysis and Prototyping of a Partially Decoupled 4-dof 3t1r Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
129
(
6
), pp.
611
616
.
28.
Salgado
,
O.
,
Altuzarra
,
O.
,
Amezua
,
E.
, and
Hernandez
,
A.
, 2007, “
A Parallelogram-Based Parallel Manipulator for Schönflies Motion
,”
ASME J. Mech. Des.
1050-0472,
129
(
12
), pp.
1243
1250
.
29.
Barbeau
,
E. J.
, 1989,
Polynomials
,
Springer-Verlag
,
Berlin
.
30.
Altuzarra
,
O.
,
Pinto
,
C.
,
Avilés
,
R.
, and
Hernández
,
A.
, 2004, “
A Practical Procedure to Analyse Singular Configurations in Closed Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
6
), pp.
929
940
.
31.
Altuzarra
,
O.
,
Salgado
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
, 2006, “
Point-Based Jacobian Formulation for Computational Kinematics of Manipulators
,”
Mech. Mach. Theory
0094-114X,
41
(
12
), pp.
1407
1423
.
32.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1998, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
743
760
.
33.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities as C-Space Singularities
,”
Eighth International Symposium on Advances in Robot Kinematics ARK 2002
.
You do not currently have access to this content.