This paper presents a novel design paradigm as well as the related detailed mechanical design embodiment of a mechanically hybrid mobile robot. The robot is composed of a combination of parallel and serially connected links resulting in a hybrid mechanism that consists of a mobile robot platform for locomotion and a manipulator arm for manipulation. Unlike most other mobile robot designs that have a separate manipulator arm module attached on top of the mobile platform, this design has the ability to simultaneously and interchangeably provide locomotion and manipulation capability. This robot enhanced functionality is complemented by an interchangeable track tension and suspension mechanism that is embedded in some of the mobile robot links to form the locomotion subsystem of the robot. The mechanical design was analyzed with a virtual prototype that was developed with MSC ADAMS software. The simulation was used to study the robot’s enhanced mobility characteristics through animations of different possible tasks that require various locomotion and manipulation capabilities. The design was optimized by defining suitable and optimal operating parameters including weight optimization and proper component selection. Moreover, the simulation enabled us to define motor torque requirements and maximize end-effector payload capacity for different robot configurations. Visualization of the mobile robot on different types of virtual terrains such as flat roads, obstacles, stairs, ditches, and ramps has helped in determining the mobile robot’s performance, and final generation of specifications for manufacturing a full scale prototype.

1.
Yamauchi
,
B.
, 2004, “
PackBot: A Versatile Platform for Military Robotics
,”
Proc. SPIE
0277-786X,
5422
, pp.
228
237
.
2.
Frost
,
T.
,
Norman
,
C.
,
Pratt
,
S.
, and
Yamauchi
,
B.
, 2002, “
Derived Performance Metrics and Measurements Compared to Field Experience for the PackBot
,” in
Proceedings of the 2002 PerMIS Workshop
,
Gaithersburg, MD
.
3.
Lewis
,
P. J.
,
Flann
,
N.
,
Torrie
,
M. R.
,
Poulson
,
E. A.
,
Petroff
,
T.
, and
Witus
,
G.
, 2005, “
Chaos: An Intelligent Ultra-Mobile SUGV: Combining the Mobility of Wheels, Tracks, and Legs
,”
Proc. SPIE
0277-786X,
5804
, pp.
427
438
.
4.
Carlson
,
J.
, and
Murphy
,
R. R.
, 2005, “
How UGVs Physically Fail in the Field
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
423
437
.
5.
Murphy
,
R. R.
, 2004, “
Activities of the Rescue Robots at the World Trade Center From 11–21 September 2001
,”
IEEE Rob. Autom. Mag.
1070-9932,
11
(
3
), pp.
50
61
.
6.
White
,
J. R.
,
Sunagawa
,
T.
, and
Nakajima
,
T.
, 1989, “
Hazardous-Duty Robots—Experiences and Needs
,”
Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems ’89 (IROS ’89)
, pp.
262
267
.
7.
White
,
J. R.
,
Coughlan
,
J.
,
Harvey
,
M.
,
Upton
,
R.
, and
Waer
,
K.
, 1989, “
Taking Andros for a Walk
,”
Nucl. Eng. Int.
,
34
(
415
), pp.
52
53
.
8.
Martens
,
J. D.
, and
Newman
,
W. S.
, 1994, “
Stabilization of a Mobile Robot Climbing Stairs
,” in
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego, CA
, Vol.
3
, pp.
2501
2507
.
9.
Goldenberg
,
A. A.
, and
Lin
,
J.
, 2005, “
Variable Configuration Articulated Tracked Vehicle
,” U.S. Patent No. 11/196,486.
11.
Gladiator Mobile Robot, Robotics institute, available: http://www.ri.cmu.eduhttp://www.ri.cmu.edu.
12.
Sandia National Laboratories
, available: http://www.sandia.govhttp://www.sandia.gov.
13.
MR-7 Tracked Mobile Robot, available: www.esit.comwww.esit.com.
14.
Bares
,
J.
, and
Stager
,
D.
, 2004, “
Expanded Field Testing Results From Spinner: A High Mobility Hybrid UGCV
,”
Proceedings of the AUVSI Unmanned Systems 2004 Conference
,
Anaheim, CA
.
15.
Drenner
,
A.
,
Burt
,
I.
,
Dahlin
,
T.
,
Kratochvil
,
B.
,
McMillen
,
C. P.
,
Nelson
,
B.
,
Papanikolopoulos
,
N.
,
Rybski
,
P. E.
,
Stubbs
,
K.
,
Waletzko
,
D.
, and
Yesin
,
K. B.
, 2002, “
Mobility Enhancements to the Scout Robot Platform
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
, pp.
1069
1074
.
16.
Drenner
,
A.
,
Burt
,
I.
,
Kratochvil
,
B.
,
Nelson
,
B.
,
Papanikolopoulos
,
N.
, and
Yesin
,
K. B.
, 2002, “
Communication and Mobility Enhancements to the Scout Robot
,”
Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
.
17.
Russel
,
S.
, 2006, “
DARPA Grand Challenge Winner
,” Popular Mechanics.
18.
Behar
,
A.
,
Matthews
,
J.
,
Carsey
,
F.
, and
Jones
,
J.
, 2004, “
NASA/JPL Tumbleweed Polar Rover
,”
Proceedings of the 2004 IEEE Aerospace Conference
, Vol.
1
, pp.
388
395
.
19.
Cleary
,
M. E.
, and
Abramson
,
M.
, 2001, “
Intelligent Autonomy for Small Throwable Land Robots
,”
Proc. SPIE
0277-786X,
4232
, pp.
421
427
.
20.
Caprari
,
G.
,
Arras
,
K. O.
, and
Siegwart
,
R.
, 2000, “
The Autonomous Miniature Robot Alice: From Prototypes to Applications
,”
Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
793
798
.
21.
Brown
,
H. B.
, Jr.
,
Weghe
,
J. M. V.
,
Bererton
,
C. A.
, and
Khosla
,
P. K.
, 2002, “
Millibot Trains for Enhanced Mobility
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
7
(
4
), pp.
452
461
.
22.
Clark
,
J. E.
,
Cham
,
J. G.
,
Bailey
,
S. A.
,
Froehlich
,
E. M.
,
Nahata
,
P. K.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
, 2001, “
Biomimetic Design and Fabrication of a Hexapedal Running Robot
,” in
Proceedings of 2001 IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3643
3649
.
23.
Darper Laboratory
, available: http://www.draper.com/http://www.draper.com/.
24.
Buehler
,
M.
,
Playter
,
R.
, and
Raibert
,
M.
, 2005, “
Robots Step Outside
,”
International Symposium on Adaptive Motion of Animals and Machines (AMAM)
,
Ilmenau, Germany
.
25.
Klaassen
,
B.
,
Linnemann
,
R.
,
Spenneberg
,
D.
, and
Kirchner
,
F.
, 2002, “
Biomimetic Walking Robot SCORPION: Control and Modelling
,”
Rob. Auton. Syst.
0921-8890,
41
(
2–3
), pp.
69
76
.
26.
Endo
,
G.
, and
Hirose
,
S.
, 1999, “
Study on Roller-Walker (Basic Experiments on Self-Contained Vehicle System)
,”
Proceedings of COE Workshop ’99
, pp.
153
160
.
27.
Retarius Wheel-Legged Mobile Robot, Lockheed Martin, available: http://www.lockheedmartin.com/http://www.lockheedmartin.com/.
28.
Wilcox
,
B. H.
,
Litwin
,
T.
,
Biesiadecki
,
J.
,
Matthews
,
J.
,
Heverly
,
M.
,
Morrison
,
J.
,
Townsend
,
J.
,
Ahmed
,
N.
,
Sirota
,
A.
, and
Cooper
,
B.
, 2007, “
ATHLETE: A Cargo Handling and Manipulation Robot for the Moon
,”
J. Field Rob.
,
24
(
5
), pp.
421
434
.
29.
Lauria
,
M.
,
Piguet
,
Y.
, and
Siegwart
,
R.
, 2002, “
Octopus—An Autonomous Wheeled Climbing Robot
,” in
Proceedings of the Fifth International Conference on Climbing and Walking Robots
,
Professional Engineering Publishing Limited
,
Bury, UK
.
30.
Estier
,
T.
,
Merminod
,
Y. C.
,
Lauria
,
M.
,
Piget
,
R.
, and
Siegwart
,
R.
, 2000, “
An Innovative Space Rover With Extended Climbing Abilities
,” in
Proceedings of Space and Robotics
,
Albuquerque
.
31.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
, 2001, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robot. Res.
0278-3649,
20
(
7
), pp.
616
631
.
32.
Morrey
,
J. M.
,
Lambrecht
,
B.
,
Horchler
,
A. D.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
, 2003, “
Highly Mobile and Robust Small Quadruped Robots
,”
Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
82
87
.
33.
Larsen
,
R.
, and
Kerrebrock
,
P.
, 2003, “
A High-Mobility Tactical Micro-Robot (HMTM) System
,”
Unmanned Systems Conference
,
Baltimore, MD
.
34.
Kennedy
,
B.
,
Agazarian
,
H.
,
Cheng
,
Y.
,
Garrett
,
M.
,
Hickey
,
G.
,
Huntsberger
,
T.
,
Magnone
,
L.
,
Mahoney
,
C.
,
Meyer
,
A.
, and
Knight
,
J.
, 2001, “
LEMUR: Legged Excursion Mechanical Utility Rover
,”
Auton. Rob.
0929-5593,
11
(
11
), pp.
201
205
.
35.
Autumn
,
K.
,
Buehler
,
M.
,
Cutkosky
,
M.
,
Fearing
,
R.
,
Full
,
R. J.
,
Goldman
,
D.
,
Groff
,
R.
,
Provancher
,
W.
,
Rizzi
,
A. A.
,
Saranli
,
U.
,
Saunders
,
A.
, and
Koditschek
,
D. E.
, 2005, “
Robotics in Scansorial Environments
,”
Proc. SPIE
0277-786X,
5804
(
1
), pp.
291
302
.
36.
Clarifying Climber Robot, Clarifying Technologies, available: http://www.clarifyingtech.com/http://www.clarifyingtech.com/.
37.
Sitti
,
M.
, and
Fearing
,
R. S.
, 2003, “
Synthetic Gecko Foot-Hair Micro/Nanostructures as Dry Adhesives
,”
J. Adhes. Sci. Technol.
0169-4243,
17
(
8
), pp.
1055
1073
.
38.
Frog Hopping Robot, Jet Propulsion Laboratory, available: http://www.jpl.nasa.gov/index.cfmhttp://www.jpl.nasa.gov/index.cfm.
39.
Fiorini
,
P.
,
Hayati
,
S.
,
Heverly
,
M.
, and
Gensler
,
J.
, 1999, “
A Hopping Robot for Planetary Exploration
,”
Proceedings of the 2004 IEEE Aerospace Conference
,
Snowmass at Aspen, CO
, Vol.
2
, pp.
153
158
.
40.
Costo
,
S.
, and
Molfino
,
R.
, 2004, “
A New Robotic Unit for Onboard Airplanes Bomb Disposal
,”
35th International Symposium on Robotics ISR 2004
,
Paris
, pp.
23
26
.
41.
Michaud
,
F.
,
Létourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M. A.
,
Millette
,
M.
,
Paré
,
J. F.
,
Tremblay
,
M. C.
,
Lepage
,
P.
,
Morin
,
Y.
,
Bisson
,
J.
, and
Caron
,
S.
, 2005, “
Multi-Modal Locomotion Roéotic Platform Using Leg-Track-Wheel Articulations
,”
Auton. Rob.
0929-5593,
18
(
2
), pp.
137
156
.
42.
Munkeby
,
S.
,
Jones
,
D.
,
Bugg
,
G.
, and
Smith
,
K.
, 2002, “
Applications for the MATILDA Robotic Platform
,”
Proc. SPIE
0277-786X,
4715
, pp.
206
213
.
43.
HDE Manufacturing, Inc.
, 2006, “
MURV-100: The EOD, SWAT, and WMD Robot System
,” available online: http://www.hdemfg.comhttp://www.hdemfg.com.
44.
Hirose
,
S.
,
Fukushima
,
E. F.
,
Damoto
,
R.
, and
Nakamoto
,
H.
, 2001, “
Design of Terrain Adaptive Versatile Crawler Vehicle HELIOS-VI
,”
Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, HI, Vol.
3
, pp.
1540
1545
.
45.
Hirose
,
S.
,
Sensu
,
T.
, and
Aoki
,
S.
, 1992, “
The TAQT Carrier: A Pratical Terrain-Adaptive Quadru-Track Carrier Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo
, pp.
2068
2073
.
46.
Hirose
,
S.
,
Aoki
,
S.
, and
Miyake
,
J.
, 1990, “
Design and Control of Quadru-Truck Crawler Vehicle HELIOS-II
,”
Proceedings of the Eight RoManSy Symposium
,
Cracow, Poland
, pp.
1
10
.
47.
Guarnieri
,
M.
,
Debenest
,
P.
,
Inoh
,
T.
,
Fukushima
,
E.
, and
Hirose
,
S.
, 2005, “
Helios VII: A New Vehicle for Disaster Response, Mechanical Design and Basic Experiments
,”
Adv. Rob.
0169-1864,
19
(
8
), pp.
901
927
.
48.
Iwamoto
,
T.
, and
Yamamoto
,
H.
, 1990, “
Mechanical Design of Variable Configuration Tracked Vehicle
,”
J. Mech. Des.
1050-0472,
112
, pp.
289
294
.
49.
Purvis
,
J. W.
, and
Klarer
,
P. R.
, 1992, “
RATLER: Robotic All Terrain Lunar Exploration Rover
,” in
Proceedings of Sixth Annual Space Operations, Applications and Research Symposium
,
Johnson Space Center, Houston, TX
, pp.
174
179
.
50.
Blackburn
,
M. R.
,
Bailey
,
R.
, and
Lytle
,
B.
, 2004, “
Improved Mobility in a Multi-degree-of-Freedom Unmanned Ground Vehicle (UGV)
,”
Proc. SPIE
0277-786X,
5422
, pp,
124
134
.
51.
Full
,
R. J.
, and
Koditschek
,
D. E.
, 1999, “
Neuromechanical Hypotheses of Legged Locomotion on Land
J. Exp. Biol.
0022-0949,
202
, pp.
3325
3332
.
52.
Malik
,
S. M.
,
Lin
,
J.
, and
Goldenberg
,
A. A.
, 2006, “
Virtual Prototyping for Conceptual Design of a Tracked Mobile Robot
,”
IEEE 2006 Canadian Conference on Electrical and Computer Engineering
,
Ottawa, ON, Canada
, pp.
2349
2352
.
53.
Malik
,
S. M.
, 2006, “
Virtual Prototyping for Conceptual Design of Tracked Mobile Robots
,” M.S. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, ON, Canada.
You do not currently have access to this content.