We developed a design method to configure optimal compliant mechanisms consisting of standardized elements such as semirigid beams, hubs, and joints. In the proposed design approach, mechanism compliance is based upon elastic deformations of joint elements made of short elastic beams. To set up the design problem as an optimization problem, a standard ground beam-based topology optimization method is modified to handle compliant mechanisms comprised of design variable-independent semirigid beams and design variable-dependent elastic joints. In the proposed method, unlike structural stiffness maximization problems, intermediate values should appear to allow elastic deformations in the joints. With our approach, reconfiguration design from one existing compliant mechanism to another can be formulated wherein the number of beam element relocation operations is also minimized. This formulation can be useful in minimizing the time and effort required to convert one mechanism to another.

1.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
(
3
), pp.
535
559
.
2.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
49
62
.
3.
Saxena
,
A.
, 2005, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
1615-147X,
30
, pp.
477
490
.
4.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
5.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2003, “
An Element Removal and Reintroduction Strategy for the Topology Optimization of Structures and Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1413
1430
.
6.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
0890-5452,
28
(
4
), pp.
245
280
.
7.
Joo
,
J.
, and
Kota
,
S.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
8.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2004, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
4
), pp.
295
299
.
9.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Synthesis of Electrothermal Compliant Mechanisms Using Line Elements
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3–4
), pp.
209
218
.
10.
Ohsaki
,
M.
, and
Katoh
,
N.
, 2005, “
Topology Optimization of Trusses With Stress and Local Constraints on Nodal Stability and Member Intersection
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
3
), pp.
190
197
.
11.
Hjelle
,
D.
, and
Lipson
,
H.
, 2009, “
A Robotically Reconfigurable Truss
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, King’s College London, UK, Jun. 22–24, pp.
73
78
.
12.
Jianguo
,
T.
,
Xiong
,
L.
,
Fei
,
Y.
, and
Zongquan
,
D.
, 2009, “
A Wheel-Arm Reconfigurable Mobile Robot Design and Its Reconfigurable Configuration
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, King’s College London, UK, Jun. 22–24, pp.
550
557
.
13.
Gu
,
H.
,
Wang
,
Z.
, and
Wang
,
H.
, 2005, “
Shape Reconfigurable Mechanism of an Earthquake Rescue Robot
,”
Proceedings of the IEEE, International Conference on Mechatronics and Automation
, Niagara Falls, Canada, Jul., pp.
1145
1150
.
14.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2003, “
A Computational Approach to the Number of Synthesis of Linkages
,”
ASME J. Mech. Des.
0161-8458,
125
(
1
), pp.
110
118
.
15.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
, 1996, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
126
131
.
16.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2003, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanisms Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
701
707
.
17.
Fredricson
,
H.
,
Johansen
,
T.
,
Klarbring
,
A.
, and
Petersson
,
J.
, 2003, “
Topology Optimization of Frame Structures With Flexible Joints
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
3
), pp.
199
214
.
18.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
, 2005, “
Element Connectivity Parameterization for Topology Optimization of Geometrically Nonlinear Structures
,”
Int. J. Solids Struct.
0020-7683,
42
(
7
), pp.
1983
2009
.
19.
Fujii
,
D.
,
Ishikawa
,
M.
,
Suzuki
,
K.
, and
Ohtsubo
,
H.
, 2001, “
Topology Optimization of Elastic Link Mechanism
,”
Proceedings of the Sixth US National Congress on Computational Mechanics
, Dearborn, MI, p. 130.
20.
Kim
,
M. J.
,
Jang
,
G. W.
, and
Kim
,
Y. Y.
, 2008, “
Application of a Ground Beam-Joint Topology Optimization Method for Multi-piece Frame Structure Design
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
081401
.
21.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization-Theory, Methods and Applications
,
Springer
,
Berlin
.
22.
Haug
,
E. J.
,
Choi
,
K. K.
, and
Komkov
,
V.
, 1986,
Design Sensitivity Analysis of Structural Systems
,
Academic
,
Orlando
.
23.
Svanberg
,
K.
, 1987, “
Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
2
), pp.
359
373
.
24.
Yoon
,
G. H.
,
Kim
,
Y. Y.
, and
Bendsøe
,
M. P.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
139
150
.
25.
Kim
,
J. E.
,
Kim
,
Y. Y.
, and
Min
,
S.
, 2005, “
A Note on Hinge-Free Topology Design Using the Special Triangulation of Design Elements
,”
Commun. Numer. Methods Eng.
1069-8299,
21
, pp.
701
710
.
26.
Poulsen
,
T. A.
, 2002, “
A Simple Scheme to Prevent Checkerboard Patterns and One-Node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
396
399
.
You do not currently have access to this content.