Gerotor performance is influenced by sealing properties, area efficiency, contact stress, and outlet pressure. This paper uses the hypotrochoidal curve to generate the gerotor profile, and adopts the curvature difference method to assess the sealing property and predict the stress on the rotor profile. Numerical examples show that this method can successfully estimate and forecast the rotor sealing and the Hertz stress variation. For confirmation, these results are proved by theoretical stress calculations and software simulations. This paper also presents the results of sealing performance, stress variation, area efficiency, and outlet pressure for various geometrical design parameters. These results can serve as a pump performance reference, assisting designers wishing to create a better gerotor pump.

1.
Tsay
,
C. B.
, and
Yu
,
C. Y.
, 1990, “
The Mathematical Model of Gerotor Pump Applicable to Its Characteristic Study
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
11
(
4
), pp.
385
391
.
2.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
, 1991, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
133
141
.
3.
Beard
,
J. E.
,
Yannitell
,
D. W.
, and
Pennock
,
G. R.
, 1992, “
The Effect of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
373
389
.
4.
Litvin
,
F. L.
,
Demenego
,
A.
, and
Vecchiato
,
D.
, 2001, “
Formation by Branches of Envelope to Parametric Families of Surfaces and Curves
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4587
4608
.
5.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Manco
,
S.
, 2002, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
0094-114X,
37
(
3
), pp.
311
332
.
6.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
, 2007, “
Geometric Design Using Hypotrochoid and Non-Undercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
413
420
.
7.
Paffoni
,
B.
,
Progri
,
R.
, and
Gras
,
R.
, 2004, “
Teeth Clearance Effects Upon Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
218
(
4
), pp.
247
256
.
8.
Colbourne
,
J. R.
, 1976, “
Reduction of the Contact Stress in Internal Gear Pumps
,”
ASME J. Eng. Ind.
0022-0817, pp.
1296
1300
.
9.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
Khamashta
,
M.
, and
Codina
,
E.
, 2006, “
Contact Problems of a Trochoidal-Gear Pump
,”
Int. J. Mech. Sci.
0020-7403,
48
(
12
), pp.
1471
1480
.
10.
Litvin
,
F. L.
, 1994,
Gear Geometry and Applied Theory
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
11.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1987,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
12.
Chang
,
Y. J.
, and
Kim
,
J. H.
, 2007, “
Development of an Integrated System for the Automated Design of a Gerotor Oil Pump
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1099
1105
.
13.
Hsieh
,
C. F.
, and
Hwang
,
Y. W.
, 2007, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1269
1377
.
14.
Yan
,
J.
,
Yang
,
D. C. H.
, and
Tong
,
S. H.
, 2008, “
On the Generation of Analytical Noncircular Multilobe Internal Pitch Curves
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
092601
.
15.
Yan
,
J.
,
Yang
,
D. C. H.
, and
Tong
,
S. H.
, 2009, “
A New Gerotor Design Method With Switch Angle Assignability
,”
ASME J. Mech. Des.
0161-8458,
131
(
1
), p.
011006
.
You do not currently have access to this content.