The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.

1.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, β€œ
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
238
–
245
.
2.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, β€œ
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
–
49
.
3.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, β€œ
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
–
318
.
4.
Sigmund
,
O.
, 1997, β€œ
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
, pp.
493
–
524
.
5.
DΓ­az
,
A. R.
, and
Sigmund
,
O.
, 1995, β€œ
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
–
45
.
6.
Jog
,
C. S.
, and
Haber
,
R. B.
, 1996, β€œ
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
203
–
226
.
7.
Poulsen
,
T. A.
, 2002, β€œ
A Simple Scheme to Prevent Checkerboard Patterns and One-Node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
396
–
399
.
8.
Poulsen
,
T. A.
, 2003, β€œ
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
–
760
.
9.
Pomezanski
,
V.
,
Querin
,
O. M.
, and
Rozvany
,
G. I. N.
, 2005, β€œ
CO-SIMP: Extended SIMP Algorithm With Direct Corner Contact Control
,”
Struct. Multidiscip. Optim.
1615-147X,
30
, pp.
164
–
168
.
10.
Haber
,
R. B.
,
Jog
,
S. C.
, and
Bendsoe
,
M. P.
, 1996, β€œ
A New Approach to Variable-Topology Shape Design Using a Constraint on Perimeter
,”
Struct. Multidiscip. Optim.
1615-147X,
11
, pp.
1
–
12
.
11.
Petersson
,
J.
, 1999, β€œ
Some Convergence Results in Perimeter-Controlled Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
171
, pp.
123
–
140
.
12.
Petersson
,
J.
, and
Sigmund
,
O.
, 1998, β€œ
Slope Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
1417
–
1434
.
13.
Zhou
,
M.
,
Shyy
,
Y. K.
, and
Thomas
,
H. L.
, 2001, β€œ
Checkerboard and Minimum Member Size Control in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
152
–
158
.
14.
Jang
,
G. W.
,
Jeong
,
J. H.
,
Kim
,
Y. Y.
,
Sheen
,
D.
,
Park
,
C.
, and
Kim
,
M. N.
, 2003, β€œ
Checkerboard-Free Topology Optimization Using Non-Conforming Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1717
–
1735
.
15.
Jang
,
G. W.
,
Lee
,
S.
,
Kim
,
Y. Y.
, and
Sheen
,
D.
, 2005, β€œ
Topology Optimization Using Non-Conforming Finite Elements: Three-Dimensional Case
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
859
–
875
.
16.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
, 2003, β€œ
Topology Optimization With Implicit Functions and Regulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1177
–
1196
.
17.
Guest
,
J. K.
,
Prevost
,
J. H.
, and
Belytschko
,
T.
, 2004, β€œ
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
238
–
254
.
18.
Saxena
,
A.
, 2008, β€œ
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
082304
.
19.
Jain
,
C.
, and
Saxena
,
A.
, 2010, β€œ
An Improved Material-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
061006
.
20.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
New York
.
21.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, β€œ
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
331
–
389
.
22.
Rozvany
,
G. I. N.
, 2009, β€œ
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
37
, pp.
217
–
237
.
23.
Amstutz
,
S.
, and
Novotny
,
A. N.
, 2010, β€œ
Topological Optimization of Structures Subject to Von Mises Stress Constraints
,”
Struct. Multidiscip. Optim.
1615-147X,
41
, pp.
407
–
420
.
24.
Allaire
,
G.
,
Jouve
,
F.
, and
Maillot
,
H.
, 2004, β€œ
Topology Optimization for Minimum Stress Design With the Homogenization Method
,”
Struct. Multidiscip. Optim.
1615-147X,
28
, pp.
87
–
98
.
25.
Allaire
,
G.
, and
Jouve
,
F.
, 2008, β€œ
Minimum Stress Optimal Design With the Level-Set Method
,”
Eng. Anal. Boundary Elem.
0955-7997,
32
, pp.
909
–
918
.
26.
Burger
,
M.
, and
Stainko
,
R.
, 2006, β€œ
Phase-Field Relaxation of Topology Optimization With Local Stress Constraints
,”
SIAM J. Control Optim.
0363-0129,
45
, pp.
1447
–
1466
.
27.
Duysinx
,
P.
, and
Bendsoe
,
M. P.
, 1998, β€œ
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
1453
–
1478
.
28.
Fancello
,
E. A.
, 2006, β€œ
Topology Optimization for Minimum Mass Design Considering Local Failure Constraints and Contact Boundary Conditions
,”
Struct. Multidiscip. Optim.
1615-147X,
32
, pp.
229
–
240
.
29.
Pereira
,
J. T.
,
Fancello
,
E. A.
, and
Barcellos
,
C. S.
, 2004, β€œ
Topology Optimization for Minimum Stress Design With the Homogenization Method
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
50
–
66
.
30.
Grunbaum
,
B.
, and
Shephard
,
G. C.
, 1989,
Tilings and Patterns: An Introduction
,
Freeman
,
San Francisco
.
31.
Langelaar
,
M.
, 2007, β€œ
The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization
,”
Proceedings of the Seventh World Congress on Structural and Multidisciplinary Optimization
, Seoul, Korea.
32.
Kim
,
J. E.
,
Kim
,
Y. Y.
, and
Min
,
S.
, 2005, β€œ
A Note on Hinge-Free Topology Design Using the Special Triangulation of Design Elements
,”
Commun. Numer. Methods Eng.
1069-8299,
21
, pp.
701
–
710
.
33.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
34.
Kim
,
I. Y.
, and
Weck
,
O. L.
, 2005, β€œ
Variable Chromosome Length Genetic Algorithm for Progressive Refinement in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
29
, pp.
445
–
456
.
35.
Kim
,
D. S.
,
Jung
,
D. H.
, and
Kim
,
Y. Y.
, 2008, β€œ
Multiscale Multiresolution Genetic Algorithm With a Golden Sectioned Population Composition
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
349
–
367
.
36.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, β€œ
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
1005
–
1012
.
37.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
, 1996, β€œ
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
89
–
98
.
38.
Kane
,
C.
, and
Schoenauer
,
M.
, 1996, β€œ
Topological Optimum Design Using Genetic Algorithms
,”
Contr. Cybernet.
0324-8569,
25
, pp.
1059
–
1088
.
39.
Duda
,
J. W.
, and
Jakiela
,
M. J.
, 1997, β€œ
Generation and Classification of Structural Topologies Genetic Algorithm Speciation
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
127
–
131
.
40.
Deo
,
N.
, 1990,
Graph Theory With Applications to Engineering and Computer Science
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Haupt
,
R. L.
, and
Haupt
,
S. E.
, 2004,
Practical Genetic Algorithms
, 2nd ed.,
Wiley
,
New York
.
42.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, β€œ
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
253
–
261
.
43.
Zhou
,
H.
, and
Ting
,
K. L.
, 2006, β€œ
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
551
–
558
.
You do not currently have access to this content.