For discrete actuation with shape memory alloy (SMA) wires, the actuation moment can be controlled by changing the amount of wire offset. Increasing offset not only enhances the actuating moment, but also demands larger displacement capability of the actuator. In this paper, large deflection of a cantilever beam actuated by a SMA wire has been investigated. Both the theoretical and experimental results reveal the existence of an optimum offset maximizing the end deflection. The optimum offset depends on the flexural stiffness of the beam, SMA wire properties, and the input actuation level.
Issue Section:
Research Papers
1.
Liang
, C.
, and Rogers
, C. A.
, 1992, “Design of Shape Memory Alloy Actuators
,” ASME J. Mech. Des.
0161-8458, 114
(2
), pp. 223
–230
.2.
Elahinia
, M. H.
, and Ashrafiuon
, H.
, 2002, “Non-Linear Control of a Shape Memory Alloy Actuated Manipulator
,” Trans. ASME, J. Vib. Acoust.
1048-9002, 124
(4
), pp. 566
–575
.3.
Simpson
, J. C.
, and Boller
, C.
, 2008, “Design and Performance of a Shape Memory Alloy Reinforced Composite Aerodynamic Profile
,” Smart Mater. Struct.
0964-1726, 17
(2
), p. 025028
.4.
Bundhoo
, V.
, Haslam
, E.
, Birch
, B.
, and Park
, E. J.
, 2009, “A Shape Memory Alloy-Based Tendon-Driven Actuation System for Biomimetic Artificial Fingers, Part I: Design and Evaluation
,” Robotica
0263-5747, 27
, pp. 131
–146
.5.
Banerjee
, A.
, Bhattacharya
, B.
, and Mallik
, A. K.
, 2009, “Forward and Inverse Analyses of Two Link Compliant Mechanism
,” Mech. Mach. Theory
0094-114X, 44
(2
), pp. 369
–381
.6.
Chaudhry
, Z.
, and Rogers
, C. A.
, 1991, “Bending and Shape Control of Beams Using SMA Actuators
,” J. Intell. Mater. Syst. Struct.
1045-389X, 2
(4
), pp. 581
–602
.7.
Brinson
, L. C.
, Huang
, M. S.
, Boller
, C.
, and Brand
, W.
, 1997, “Analysis of Controlled Beam Deflections Using SMA Wires
,” J. Intell. Mater. Syst. Struct.
1045-389X, 8
(1
), pp. 12
–25
.8.
Funakubo
, H.
, 1987, Shape Memory Alloys
, Gordon and Breach
, New York
.9.
Otsuka
, K.
, and Wayman
, C. M.
, 1998, Shape Memory Materials
, Cambridge University Press
, Cambridge
.10.
Tanaka
, K.
, 1986, “A Thermomechanical Sketch for Shape Memory Effect: One-Dimensional Tensile Behavior
,” Res. Mech.
0143-0084, 18
, pp. 251
–263
.11.
DeCastro
, J.
, Melcher
, K. J.
, Noebe
, R. D.
, and Gaydosh
, D. J.
, 2007, “Development of a Numerical Model for High-Temperature Shape Memory Alloys
,” Smart Mater. Struct.
0964-1726, 16
(6
), pp. 2080
–2090
.12.
Liang
, C.
, and Rogers
, C. A.
, 1990, “One Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,” J. Intell. Mater. Syst. Struct.
1045-389X, 1
, pp. 207
–234
.13.
Brinson
, L. C.
, 1993, “One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,” J. Intell. Mater. Syst. Struct.
1045-389X, 4
, pp. 229
–242
.14.
Seelecke
, S.
, and Müller
, I.
, 2004, “Shape Memory Alloy Actuators in Smart Structures: Modeling and Simulation
,” Appl. Mech. Rev.
0003-6900, 57
(1
), pp. 23
–46
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.