For discrete actuation with shape memory alloy (SMA) wires, the actuation moment can be controlled by changing the amount of wire offset. Increasing offset not only enhances the actuating moment, but also demands larger displacement capability of the actuator. In this paper, large deflection of a cantilever beam actuated by a SMA wire has been investigated. Both the theoretical and experimental results reveal the existence of an optimum offset maximizing the end deflection. The optimum offset depends on the flexural stiffness of the beam, SMA wire properties, and the input actuation level.

1.
Liang
,
C.
, and
Rogers
,
C. A.
, 1992, “
Design of Shape Memory Alloy Actuators
,”
ASME J. Mech. Des.
0161-8458,
114
(
2
), pp.
223
230
.
2.
Elahinia
,
M. H.
, and
Ashrafiuon
,
H.
, 2002, “
Non-Linear Control of a Shape Memory Alloy Actuated Manipulator
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
124
(
4
), pp.
566
575
.
3.
Simpson
,
J. C.
, and
Boller
,
C.
, 2008, “
Design and Performance of a Shape Memory Alloy Reinforced Composite Aerodynamic Profile
,”
Smart Mater. Struct.
0964-1726,
17
(
2
), p.
025028
.
4.
Bundhoo
,
V.
,
Haslam
,
E.
,
Birch
,
B.
, and
Park
,
E. J.
, 2009, “
A Shape Memory Alloy-Based Tendon-Driven Actuation System for Biomimetic Artificial Fingers, Part I: Design and Evaluation
,”
Robotica
0263-5747,
27
, pp.
131
146
.
5.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A. K.
, 2009, “
Forward and Inverse Analyses of Two Link Compliant Mechanism
,”
Mech. Mach. Theory
0094-114X,
44
(
2
), pp.
369
381
.
6.
Chaudhry
,
Z.
, and
Rogers
,
C. A.
, 1991, “
Bending and Shape Control of Beams Using SMA Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
2
(
4
), pp.
581
602
.
7.
Brinson
,
L. C.
,
Huang
,
M. S.
,
Boller
,
C.
, and
Brand
,
W.
, 1997, “
Analysis of Controlled Beam Deflections Using SMA Wires
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
1
), pp.
12
25
.
8.
Funakubo
,
H.
, 1987,
Shape Memory Alloys
,
Gordon and Breach
,
New York
.
9.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge
.
10.
Tanaka
,
K.
, 1986, “
A Thermomechanical Sketch for Shape Memory Effect: One-Dimensional Tensile Behavior
,”
Res. Mech.
0143-0084,
18
, pp.
251
263
.
11.
DeCastro
,
J.
,
Melcher
,
K. J.
,
Noebe
,
R. D.
, and
Gaydosh
,
D. J.
, 2007, “
Development of a Numerical Model for High-Temperature Shape Memory Alloys
,”
Smart Mater. Struct.
0964-1726,
16
(
6
), pp.
2080
2090
.
12.
Liang
,
C.
, and
Rogers
,
C. A.
, 1990, “
One Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
, pp.
207
234
.
13.
Brinson
,
L. C.
, 1993, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
4
, pp.
229
242
.
14.
Seelecke
,
S.
, and
Müller
,
I.
, 2004, “
Shape Memory Alloy Actuators in Smart Structures: Modeling and Simulation
,”
Appl. Mech. Rev.
0003-6900,
57
(
1
), pp.
23
46
.
You do not currently have access to this content.