A common objective in designing for human variability is to consider the variability in body size and shape of the target user population. Since anthropometric data specific to the user population of interest are seldom available, the variability is approximated. This is done in a number of ways, including the use of data from populations that are well-documented (e.g., the military), proportionality constants, and digital human models. These approaches have specific limitations, including a failure to consider the effects of lifestyle and demography, resulting in products, tasks, and environments that are inappropriately sized for the actual user population, causing problems with safety, fit, and performance. This paper explores a regression-based approach in a context where the demographic distributions of descriptors (e.g., race/ethnicity, age, and fitness) are dissimilar for the database and target population. Also examined is a stratified regression model involving the development of independent anthropometry-estimation models for each racial group. When using regression with residual variance, stratification on the predictor demographics to obtain estimates of gender, stature, and BMI distributions is shown to be sufficiently robust for usual database-target population combinations. Consideration of demographic variables in development of the regression model provides marginal improvement, but could be appropriate in specific situations.

1.
Parkinson
,
M.
,
Reed
,
M.
,
Kokkolaras
,
M.
, and
Papalambros
,
P.
, 2007, “
Optimizing Truck Cab Layout for Driver Accommodation
,”
ASME J. Mech. Des.
0161-8458,
129
(
11
), pp.
1110
1117
.
2.
Agrawal
,
A.
,
Sangwan
,
V.
,
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Binder-Macleod
,
S. A.
, 2007, “
Design of a Novel Two Degree-of-Freedom Ankle-Foot Orthosis
,”
ASME J. Mech. Des.
0161-8458,
129
(
11
), pp.
1137
1143
.
3.
Fattah
,
A.
, and
Agrawal
,
S. K.
, 2005, “
On the Design of a Passive Orthosis to Gravity Balance Human Legs
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
802
808
.
4.
Garneau
,
C. J.
, and
Parkinson
,
M. B.
, 2009, “
Including Preference in Anthropometry-Driven Models for Design
,”
ASME J. Mech. Des.
0161-8458,
131
(
10
), p.
101006
.
5.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
, and
Wang
,
N.
, 2009, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
131
(
7
), p.
071008
.
6.
MacDonald
,
E. F.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
, 2009, “
Preference Inconsistency in Multidisciplinary Design Decision Making
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031009
.
7.
HFES 300 Committee
, 2004,
Guidelines for Using Anthropometric Data in Product Design
,
Human Factors and Ergonomics Society
,
Santa Monica, CA
.
8.
SAE International
, 2009,
Automotive Engineering Handbook
,
Society of Automotive Engineers
,
Warrendale, PA
.
9.
Gordon
,
C. C.
,
Churchill
,
T.
,
Clauser
,
C. E.
,
Bradtmiller
,
B.
,
McConville
,
J. T.
,
Tebbetts
,
I.
, and
Walker
,
R. A.
, 1989, “
1988 Anthropometric Survey of US Army Personnel: Methods and Summary Statistics. Final Report
,” Report No. NATICK/TR-89/027.
10.
Blackwell
,
S.
,
Brill
,
T.
,
Boehmer
,
M.
,
Fleming
,
S.
,
Kelly
,
S.
,
Hoeferlin
,
D.
, and
Robinette
,
K.
, 2008,
Caesar Survey Measurement and Landmark Descriptions
,
Air Force Research Laboratory
,
Wright-Patterson AFB, OH
.
11.
Centers for Disease Control and Prevention
, 1994, “
National Health and Nutrition Examination Survey, III, 1988–1994
,” National Center for Health Statistics, unpublished tables.
12.
Diffrient
,
N.
,
Tilley
,
A.
, and
Bardagjy
,
J.
, 1981,
Humanscale
,
MIT
,
Cambridge, MA
.
13.
Annis
,
J. F.
, 1996, “
Aging Effects on Anthropometric Dimensions Important to Workplace Design
,”
Int. J. Ind. Ergonom.
0169-8141,
18
(
5–6
), pp.
381
388
.
14.
Mohammad
,
Y. A. A.
, 2005, “
Anthropometric Characteristics of the Hand Based on Laterality and Sex Among Jordanian
,”
Int. J. Ind. Ergonom.
0169-8141,
35
(
8
), pp.
747
754
.
15.
Hawes
,
M. R.
,
Sovak
,
D.
,
Miyashita
,
M.
,
Kang
,
S. -J.
,
Yoshihuku
,
Y.
, and
Tanaka
,
S.
, 1994, “
Ethnic Differences in Forefoot Shape and the Determination of Shoe Comfort
,”
Ergonomics
0014-0139,
37
(
1
), pp.
187
196
.
16.
Tanner
,
J.
,
Hayashi
,
T.
,
Preece
,
M.
, and
Cameron
,
N.
, 1982, “
Increase in Length of Leg Relative to Trunk in Japanese Children and Adults From 1957 to 1977: Comparison With British and With Japanese Americans
,”
Ann. Hum. Biol.
0301-4460,
9
(
5
), pp.
411
423
.
17.
Chandler
,
P.
, and
Bock
,
R.
, 1991, “
Age Changes in Adult Stature: Trend Estimation From Mixed Longitudinal Data
,”
Ann. Hum. Biol.
0301-4460,
18
(
5
), pp.
433
440
.
18.
Pheasant
,
S.
, and
Haslegrave
,
C.
, 2006,
Bodyspace: Anthropometry, Ergonomics and the Design of Work
, 3rd ed.,
Taylor & Francis
,
London
.
19.
Pheasant
,
S.
, 1982, “
A Technique for Estimating Anthropometric Data From the Parameters of the Distribution of Stature
,”
Ergonomics
0014-0139,
25
(
11
), pp.
981
992
.
20.
Drillis
,
R.
, and
Contini
,
R.
, 1966,
Body Segment Parameters
,
Office of Vocational Rehabilitation Engineering & Science
,
New York, NY
.
21.
Moroney
,
W.
, and
Smith
,
M.
, 1972, “
Empirical Reduction in Potential User Population as the Result of Imposed Multivariate Anthropometric Limits
,” Naval Aerospace Medical Research Laboratory Report No. NAMRL-1164 (AD 752 032).
22.
Roebuck
,
J. A.
, 1995,
Anthropometric Methods: Designing to Fit the Human Body
,
HFES
,
Santa Monica, CA
.
23.
Fromuth
,
R.
, and
Parkinson
,
M.
, 2008, “
Predicting the 5th and 95th Percentile Anthropometric Segment Lengths From Population Stature
,” ASME Paper No. DETC2008-50091.
24.
Robinette
,
K.
, and
McConville
,
J.
, 1981, “
An Alternative to Percentile Models
,” Society of Automotive Engineers Paper No. 810217, pp.
938
946
.
25.
Kroemer
,
K. H.
, 1989, “
Engineering Anthropometry
,”
Ergonomics
0014-0139,
32
(
7
), pp.
767
784
.
26.
Open Ergonomics Ltd.
, 2008, “
PEOPLESIZE Software
,” http://www.openerg.com/psz/http://www.openerg.com/psz/
27.
You
,
H.
, and
Ryu
,
T.
, 2004, “
Development and Application of a Generation Method of Human Models for Ergonomic Product Design in Virtual Environment
,”
Proceedings of the Human Factors and Ergonomics Society 48th Annual Meeting
, New Orleans, LA.
28.
You
,
H.
, and
Ryu
,
T.
, 2005, “
Development of a Hierarchical Estimation Method for Anthropometric Variables
,”
Int. J. Ind. Ergonom.
0169-8141,
35
(
4
), pp.
331
343
.
29.
Nadadur
,
G.
, and
Parkinson
,
M. B.
, 2008, “
Extrapolation of Anthropometric Measures to New Populations
,”
SAE International Journal of Passenger Cars—Electronic Systems
1946-4614,
1
(
1
), pp.
567
573
.
30.
Kaya
,
M. D.
,
Hasiloglu
,
A. S.
,
Bayramoglu
,
M.
,
Yesilyurt
,
H.
, and
Ozok
,
A. F.
, 2003, “
A New Approach to Estimate Anthropometric Measurements by Adaptive Neuro-Fuzzy Inference System
,”
Int. J. Ind. Ergonom.
0169-8141,
32
(
2
), pp.
105
114
.
31.
Reed
,
M. P.
,
Manary
,
M. A.
,
Flannagan
,
C. A. C.
, and
Schneider
,
L. W.
, 2002, “
A Statistical Method for Predicting Automobile Driving Posture
,”
Hum. Factors
0018-7208,
44
(
4
), pp.
557
568
.
32.
Parkinson
,
M.
, and
Reed
,
M.
, 2006, “
Optimizing Vehicle Occupant Packaging
,”
SAE Transactions: Journal of Passenger Cars–Mechanical Systems
1946-4614,
115
(
6
), pp.
890
901
.
33.
Gannon
,
A. J.
, and
Moroney
,
W. F.
, 1998, “
The Validity of Anthropometric Predictions Derived From Proportional Multipliers of Stature
,”
Proceedings of the 42nd Meeting of HFES
, Chicago, IL.
34.
Bureau of Labor Statistics
, 2007, “
Employed Persons by Detailed Industry, Sex, Race, and Hispanic or Latino Ethnicity
,” U.S. Department of Labor, http://www.bls.gov/cps/cpsaat18.pdfhttp://www.bls.gov/cps/cpsaat18.pdf
35.
Clauser
,
C.
,
McConville
,
J.
, and
Young
,
J.
, 1969, “
Weight, Volume and Center of Mass of Segments of the Human Body
,” Wright Patterson Air Force Base Paper No. AMRL-TR-69-70.
You do not currently have access to this content.