In this study, polynomial functions of orders up to five are applied to induce variations in the cradle radial setting and the velocity ratio in the kinematic scheme of the machine tool for the generation of the pinion tooth surfaces corresponding to reduced transmission error amplitudes of a hypoid gear pair. The new CNC hypoid generators have made it possible to perform this nonlinear correction motions for the cutting of the face-milled hypoid gears. An algorithm is developed for the execution of motions on the CNC hypoid generator for the generation of face-milled hypoid gear tooth surface, based on the machine tool setting variation on the cradle-type hypoid generator induced by the optimal polynomial functions up to fifth-order. By using the corresponding computer program, the motion graphs of the CNC hypoid generator are determined for the generation of hypoid gear tooth surface, based on the optimal variation in the velocity ratio in the kinematic scheme and on the variation in the cradle radial setting on a cradle-type generator. The results presented indicate that the variation of the velocity ratio in the kinematic scheme of the hypoid generator induced by a fifth-order polynomial function resulted in a 62% reduction of the maximum transmission error of the gear pair.

References

1.
Litvin
,
F. L.
, and
Zhang
,
Y.
, 1991, “
Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears
,” NASA Report No. CR-4342.
2.
Argyris
,
J.
,
Fuentes
,
A.
, and
Litvin
,
F. L.
, 2002, “
Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1057
1095
.
3.
Fuentes
,
A.
,
Litvin
,
F. L.
,
Mullins
,
B. R.
,
Woods
,
R.
, and
Handschuh
,
R. F.
, 2002, “
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
124
, pp.
524
532
.
4.
Litvin
,
F. L.
, and
Fuentes
,
A.
, 2004,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge
.
5.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
, 2006, “
Design, Manufacture, Stress Analysis, and Experimental Tests of Low-Noise High Endurance Spiral Bevel Gears
,”
Mech. Mach. Theory
,
41
, pp.
83
118
.
6.
Lin
,
C. Y.
, and
Tsay
,
C. B.
, 1997, “
Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method
,”
Mech. Mach. Theory
,
32
, pp.
121
136
.
7.
Chang
,
S. L.
,
Tsay
,
C. B.
, and
Nagata
,
S.
, 1997, “
A General Mathematical Model for Gears by CNC Hobbing Machines
,”
ASME J. Mech. Des.
,
119
, pp.
108
113
.
8.
Stadtfeld
,
H. J.
, 1999, “
The Universal Motion Concept for Bevel Gear Production
,”
Fourth World Congress on Gearing and Power Transmissions
, Paris, pp.
595
607
.
9.
Stadtfeld
,
H. J.
, and
Gaiser
,
U.
, 2000, “
The Ultimate Motion Graph
,”
ASME J. Mech. Des.
,
122
, pp.
317
322
.
10.
Linke
,
H.
,
Haase
,
A.
,
Hünecke
,
C.
,
Hutschenreiter
,
B.
, and
Trempler
,
U.
, 1999, “
A New Methodology for the Calculation of the Geometry, the Contact Pattern and the Gear Load Capacity of Bevel Gears
,”
Fourth World Congress on Gearing and Power Transmissions
, Paris, pp.
623
634
.
11.
Fong
,
Z. H.
, 2000, “
Mathematical Model of Universal Hypoid Generator With Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
,
122
, pp.
136
142
.
12.
Wang
,
P. Y.
, and
Fong
,
Z. H.
, 2005, “
Adjustability Improvement of Face-Milling Spiral Bevel Gears by Modified Radial Motion (MRM) Method
,”
Mech. Mach. Theory
,
40
, pp.
69
89
.
13.
Wang
,
P. Y.
, and
Fong
,
Y. H.
, 2006, “
Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction
,”
ASME J. Mech. Des.
,
128
, pp.
457
467
.
14.
Achtmann
,
J.
, and
Bär
,
G.
, 2003, “
Optimized Bearing Ellipses of Hypoid Gears
,”
ASME J. Mech. Des.
,
125
, pp.
739
745
.
15.
Artoni
,
A.
,
Gabaccini
,
M.
, and
Guiggiani
,
M.
, 2008, “
Nonlinear Identification of Machine Settings for Flank Form Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
130
, p.
112602
.
16.
Artoni
,
A.
,
Bracci
,
A.
,
Gabaccini
,
M.
, and
Guiggiani
,
M.
, 2009, “
Optimization of the Loaded Contact Pattern in Hypoid Gears by Automatic Topography Modification
,”
ASME J. Mech. Des.
,
131
, p.
011008
.
17.
Goldrich
,
R. N.
, 1989, “
Theory of Six Axes CNC Generation of Spiral Bevel and Hypoid Gears
,”
AGMA Fall Technical Meeting
, Pittsburgh, Paper No. 89FTM9.
18.
Thomas
,
J.
, and
Vogel
,
O.
, “
6M Machine Kinematics for Bevel and Hypoid Gears
,” VDI-Ber.,
1904
(
1
), pp.
435
451
.
19.
Fan
,
Q.
, 2006, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
, pp.
1315
1327
.
20.
Fan
,
Q.
, 2007, “
Enhanced Algorithms of Contact Simulation for Hypoid Gear Drives Produced by Face-Milling and Face-Hobbing Processes
,”
ASME J. Mech. Des.
,
129
, pp.
31
37
.
21.
Fan
,
Q.
,
DaFoe
,
R. S.
, and
Swanger
,
J. W.
, 2008, “
Higher Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
, p.
072601
.
22.
Shih
,
Y. P.
, and
Fong
,
Z. H.
, 2007, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topology
,”
ASME J. Mech. Des.
,
129
, pp.
1294
1302
.
23.
Shih
,
Y. P.
, and
Fong
,
Z. H.
, 2008, “
Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator
,”
ASME J. Mech. Des.
,
130
, p.
062604
.
24.
Di Puccio
,
F.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
, “
An Invariant Approach for Gear Generation With Supplemental Motions
,” Mech. Mach. Theory,
42
, pp.
275
295
.
25.
Cao
,
X. M.
,
Fang
,
Z. D.
, and
Zhang
,
J. L.
, 2007, “
Function-Oriented Active Tooth Surface Design of Spiral Bevel Gears
,”
12th IFToMM World Congress
, Besancon, pp.
1
6
.
26.
Liu
,
H.
,
Liu
,
Q.
,
Zhao
,
D.
,
Song
,
D.
, and
Wang
,
J.
, 2007, “
The Realization of the “SFT” and “HFT” Method on the CNC Hypoid Cutting Machine
,”
10th ASME International Power Transmission and Gearing Conference
, Las Vegas, Paper No. DETC2007/PTG-34872, pp.
1
6
.
27.
Fan
,
Q.
, 2010, “
Tooth Surface Error Correction for Face-Hobbed Hypoid Gears
,”
ASME J. Mech. Des.
,
132
, p.
011004
.
28.
Kolivand
,
M.
, and
Kahraman
,
A.
, 2009, “
A Load Distribution Model for Hypoid Gears Using Ease-off Topography and Shell Theory
,”
Mech. Mach. Theory
,
44
, pp.
1848
1865
.
29.
Kolivand
,
M.
, and
Kahraman
,
A.
, 2010, “
An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations
,”
ASME J. Mech. Des.
,
132
, p.
071004
.
30.
Artoni
,
A.
,
Kolivand
,
M.
, and
Kahraman
,
A.
, 2010, “
An Ease-off Based Optimization of the Loaded Transmission Error of Hypoid Gears
,”
ASME J. Mech. Des.
,
132
, p.
011010
.
31.
Gabiccini
,
M.
,
Bracci
,
A.
, and
Guiggiani
,
M.
, 2010, “
Robust Optimization of the Loaded Contact Pattern in Hypoid Gears With Uncertain Misalignments
,”
ASME J. Mech. Des.
,
132
, p.
041010
.
32.
Kawasaki
,
K.
, and
Tsuji
,
I.
, 2010, “
Analytical and Experimental Tooth Contact Pattern of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System
,”
ASME J. Mech. Des.
,
132
, p.
041004
.
33.
Shih
,
Y. P.
, 2010, “
A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
45
, pp.
1108
1124
.
34.
Simon
,
V.
, 2010, “
Advanced Manufacture of Spiral Bevel Gears on CNC Hypoid Generating Machine
,”
ASME J. Mech. Des.
,
132
, p.
006004
.
35.
Simon
,
V.
, 2001, “
Optimal Machine Tool Setting for Hypoid Gears Improving Load Distribution
,”
ASME J. Mech. Des.
,
123
, pp.
577
582
.
36.
Simon
,
V.
, 2005, “
Optimal Tooth Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
127
, pp.
646
655
.
37.
Simon
,
V.
, 2009, “
Design and Manufacture of Spiral Bevel Gears With Reduced Transmission Errors
,”
ASME J. Mech. Des.
,
131
, p.
041007
.
38.
Simon
,
V.
, 2000, “
Load Distribution in Hypoid Gears
,”
ASME J. Mech. Des.
,
122
, pp.
529
535
.
You do not currently have access to this content.