Optimization of the femur prosthesis is a key issue in femur replacement surgeries that provide a viable option for limb salvage rather than amputation. To overcome the drawback of the conventional techniques that do not support topology optimization of the prosthesis design, a parameterized level set method (LSM) topology optimization with arbitrary geometric constraints is presented. A predefined narrow band along the complex profile of the original femur is preserved by applying the contour method to construct the level set function, while the topology optimization is carried out inside the cavity. The Boolean R-function is adopted to combine the free boundary and geometric constraint level set functions to describe the composite level set function of the design domain. Based on the minimum compliance goal, three different designs of 2D femur prostheses subject to the target cavity fill ratios 34%, 54%, and 74%, respectively, are illustrated.

References

1.
Bickels
,
J.
,
Malawer
,
M. M.
,
Meller
,
I.
,
Kollender
,
Y.
,
Rubert
,
K. M.
, and
Henshaw
,
R. M.
,
1999
, “
Proximal and Total Femur Resections With Endoprosthetic Reconstruction
,”
10th International Symposium of the International Society of Limb Salvage (ISOLS)
.
2.
Hoell
,
S.
,
Butschek
,
S.
,
Gosheger
,
G.
,
Dedy
,
N.
,
Dieckmann
,
R.
,
Henrichs
,
M.
,
Daniilidis
,
K.
, and
Hardes
,
J.
,
2011
, “
Intramedullary and Total Femur Replacement in Revision Arthroplasty as a Last Limb-Saving Option: Is There Any Benefit From the Less Invasive Intramedullary Replacement?
,”
J. Bone Jt. Surg. Br.
,
93-B
(
11
), pp.
1545
1549
.
3.
Sumner
,
D. R.
, and
Galante
,
J. O.
,
1992
, “
Determinants of Stress Shielding: Design Versus Materials Versus Interface
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
79
96
.
4.
Donati
,
D.
,
Zavatta
,
M.
,
Gozzi
,
E.
,
Giacomini
,
S.
,
Campanacci
,
L.
, and
Mercuri
,
M.
,
2001
, “
Modular Prosthetic Replacement of the Proximal Femur After Resection of a Bone Tumour: A Long-Term Follow-Up
,”
J. Bone Jt. Surg.
,
83-B
, pp.
1156
1160
.
5.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2013
, “
Fatigue Design of a Mechanically Biocompatible Lattice for a Proof-of-Concept Femoral Stem
,”
J. Mech. Behav. Biomed. Mater.
,
22
, pp.
65
83
.
6.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2013
, “
The Fatigue Design of a Bone Preserving Hip Implant With Functionally Graded Cellular Material
,”
ASME J. Med. Devices.
,
7
(
2
), p.
020907
.
7.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.
8.
Zhu
,
X. H.
,
He
,
G.
, and
Gao
,
B. Z.
,
2005
, “
The Application of Topology Optimization on the Quantitative Description of the External Shape of Bone Structure
,”
J. Biomech.
,
38
, pp.
1612
1620
.
9.
Nowak
,
M.
,
2006
, “
Structural Optimization System Based on Trabecular Bone Surface Adaptation
,”
Struct. Multidiscip. Optim.
,
32
(
3
), pp.
241
249
.
10.
Bagge
,
M.
,
2000
, “
A Model of Bone Adaptation as an Optimization Process
,”
J. of Biomech.
,
33
(
11
), pp.
1349
1357
.
11.
Sutradhar
,
A.
,
Paulino
,
G. H.
,
Miller
,
M. J.
, and
Nguyen
,
T. H.
,
2010
, “
Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements
,”
Proc. Natl. Acad. Sci.
,
107
(
30
), pp.
13222
13227
.
12.
Nicolella
,
D. P.
,
Thacker
,
B. H.
,
Katoozian
,
H.
, and
Davy
,
D. T.
,
2006
, “
The Effect of Three-Dimensional Shape Optimization on the Probabilistic Response of a Cemented Femoral Hip Prosthesis
,”
J. Biomech.
,
39
(
7
), pp.
1265
1278
.
13.
Li
,
G. Y.
,
Xu
,
F.
,
Huang
,
X. X. D.
, and
Sun
,
G. Y.
,
2014
, “
Topology Optimization of an Automotive Tailor-Welded Blank (TWB) Door
,”
ASME J. Mech. Des.
,
137
(
5
), p.
055001
.
14.
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2011
, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031011
.
15.
Michell
,
A.
,
1904
, “
The Limits of Economy of Material in Frame Structures
,”
Philos. Mag.
,
8
(
47
), pp.
589
597
.
16.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
CMAME
,
71
(
2
), pp.
197
224
.
17.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
18.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
19.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
20.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
21.
Reynolds
,
D.
,
McConnachie
,
J.
,
Bettess
,
P.
,
Christie
,
W. C.
, and
Bull
,
J. W.
,
1999
, “
Reverse Adaptivity—A New Evolutionary Tool for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
529
552
.
22.
Wang
,
M. Y.
, and
Wang
,
X. M.
,
2004
, “
PDE-Driven Level Sets, Shape Sensitivity and Curvature Flow for Structural Topology Optimization
,”
Comput. Model. Eng. Sci.
,
6
(4), pp.
373
396
.
23.
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
24.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
25.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.
26.
Osher
,
S. J.
, and
Santosa
,
F.
,
2001
, “
Level Set Methods for Optimization Problems Involving Geometry and Constraints: I. Frequencies of a Two-Density Inhomogeneous Drum
,”
J. Comput. Phys.
,
171
(
1
), pp.
272
288
.
27.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1
), pp.
227
246
.
28.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
C. R. Math.
,
334
(
12
), pp.
1125
1130
.
29.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
30.
Allaire
,
G.
,
Gournay
,
F. D.
,
Jouve
,
F.
, and
Toader
,
A.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method
,”
Control Cybern.
,
34
, pp.
59
80
.
31.
Zhu
,
B. L.
,
Zhang
,
X. M.
, and
Fatikow
,
S.
,
2014
, “
A Velocity Predictor-Corrector Scheme in Level Set-Based Topology Optimization to Improve Computational Efficiency
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091001
.
32.
Zhu
,
B. L.
,
Zhang
,
X. M.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
33.
Wang
,
S. Y.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
.
34.
Wang
,
S. Y.
,
Lim
,
K. M.
,
Khoo
,
B. C.
, and
Wang
,
M. Y.
,
2007
, “
An Extended Level Set Method for Shape and Topology Optimization
,”
J. Comput. Phys.
,
221
(
1
), pp.
395
421
.
35.
Luo
,
Z.
,
Tong
,
L. Y.
,
Wang
,
M. Y.
, and
Wang
,
S. Y.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.
36.
Luo
,
Z.
,
Wang
,
M. Y.
,
Wang
,
S. Y.
, and
Wei
,
P.
,
2008
, “
A Level Set-Based Parameterization Method for Structural Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
76
(
1
), pp.
1
26
.
37.
Luo
,
Z.
,
Tong
,
L. Y.
, and
Kang
,
Z.
,
2009
, “
A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions
,”
Comput. Struct.
,
87
(
7
), pp.
425
434
.
38.
Wei
,
P.
,
Wang
,
M. Y.
, and
Xing
,
X. H.
,
2010
, “
A Study on X-Fem in Continuum Structural Optimization Using a Level Set Model
,”
Comput.-Aided Des.
,
42
(
8
), pp.
708
719
.
39.
Chen
,
J.
,
Shapiro
,
V.
,
Suresh
,
K.
, and
Tsukanov
,
I.
,
2007
, “
Shape Optimization With Topological Changes and Parametric Control
,”
Int. J. Numer. Methods Eng.
,
71
(
3
), pp.
313
346
.
40.
Chen
,
J.
,
Freytag
,
M.
, and
Shapiro
,
V.
,
2008
, “
Shape Sensitivity of Constructively Represented Geometric Models
,”
Comput. Aided Geom. Des.
,
25
(
7
), pp.
470
488
.
41.
Chen
,
S.
,
Wang
,
M. Y.
, and
Liu
,
A. Q.
,
2008
, “
Shape Feature Control in Structural Topology Optimization
,”
Comput.-Aided Des.
,
40
(
9
), pp.
951
962
.
42.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Explicit Feature Control in Structural Topology Optimization Via Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
354
378
.
43.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2014
, “
Thickness Control in Structural Optimization Via a Level Set Method
,” https://hal.archives-ouvertes.fr/hal-00985000
44.
Liu
,
T.
,
Wang
,
S. T.
,
Li
,
B.
, and
Gao
,
L.
,
2014
, “
A Level-Set-Based Topology and Shape Optimization Method for Continuum Structure Under Geometric Constraints
,”
Struct. Multidiscip. Optim.
,
50
(
2
), pp.
253
273
.
45.
Liu
,
T.
,
Li
,
B.
,
Wang
,
S. T.
, and
Gao
,
L.
,
2014
, “
Eigenvalue Topology Optimization of Structures Using a Parameterized Level Set Method
,”
Struct. Multidiscip. Optim.
,
50
(
4
), pp.
573
591
.
46.
Wang
,
B.
, and
Cheng
,
G.
,
2006
, “
Design of Cellular Structure for Optimum Efficiency of Heat Dissipation
,”
IUTAM
Symposium on Topological Design Optimization of Structures, Machines and Materials
, Springer, Berlin, pp.
107
116
.
47.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
(
1
), pp.
389
396
.
48.
Schaback
,
R.
, and
Wendland
,
H.
,
2001
, “
Characterization and Construction of Radial Basis Functions
,”
Multivar. Approximation Appl.
, N. Dyn, D. Leviatan, D. Levin, and A. Pinkus, eds., Cambridge University Press, Cambridge, UK, pp.
1
24
.
49.
Hales
,
T. C.
,
2007
, “
The Jordan Curve Theorem, Formally and Informally
,”
Am. Math. Mon.
,
114
(
10
), pp.
882
894
.
50.
Shimrat
,
M.
,
1962
. “
Algorithm 112: Position of Point Relative to Polygon
,”
Commun. ACM
,
5
, pp.
446
451
.
51.
O'Searcoid
,
M.
,
2006
,
Metric Spaces
,
Springer
,
Berlin
.
52.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
.
53.
Dunavant
,
D. A.
,
1985
, “
High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle
,”
Int. J. Numer. Methods Eng.
,
21
(
6
), pp.
1129
1148
.
54.
2014
, “RESURF,” http://www.resurf3d.com
55.
Glassman
,
A.
,
Bobyn
,
J.
, and
Tanzer
,
M.
,
2006
, “
New Femoral Designs: Do They Influence Stress Shielding?
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
64
74
.
56.
Huiskes
,
R.
,
Weinans
,
H.
, and
Van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.
57.
Abdul-Kadir
,
M. R.
,
Hansen
,
U.
,
Klabunde
,
R.
,
Lucas
,
D.
, and
Amis
,
A.
,
2008
, “
Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit
,”
J. Biomech.
,
41
(
3
), pp.
587
594
.
58.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
,
2006
, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
,”
J. Biomech.
,
39
(
7
), pp.
1169
1179
.
59.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
,
2001
, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech.
,
16
(
9
), pp.
765
775
.
60.
Benvenuti
,
S.
,
Ceccanti
,
F.
, and
De Kestelier
,
X.
,
2013
, “
Living on the Moon: Topological Optimization of a 3D-Printed Lunar Shelter
,”
NEXUS Network J.
,
15
(
2
), pp.
285
302
.
61.
Snelling
,
D.
,
Li
,
Q.
,
Meisel
,
N.
,
Williams
,
C. B.
,
Batra
,
R. C.
, and
Druschitz
,
A. P.
,
2015
, “
Lightweight Metal Cellular Structures Fabricated Via 3D Printing of Sand Cast Molds
,”
Adv. Eng. Mater.
,
17
(
7
), pp.
923
932
.
62.
Gerstle
,
T. L.
,
Ibrahim
,
A. M. S.
,
Kim
,
P. S.
,
Lee
,
B. T.
, and
Lin
,
S. J.
,
2014
, “
A Plastic Surgery Application in Evolution: Three-Dimensional Printing
,”
Plast. Reconstr. Surg.
,
133
(
2
), pp.
446
451
.
You do not currently have access to this content.