Modular product platforms have been shown to provide substantial cost and time savings while still allowing companies to offer a variety of products. As a result, a multitude of product platform methods have been developed over the last decade within the design research community. However, comparison and integration of suitable methods is difficult since the methods have, for the most part, been developed in isolation from one another. In reviewing the literature in modularity and product platforms, we create a generic set of 13 platform design steps for developing a platform concept. We then examine a set of product platform concept development processes used at several different companies, and from this form a generic sequence of the steps. We then associate the various developed methods to the sequence, thereby enabling the chaining together of the various modular and platform design methods developed by the community.

References

1.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J.
, eds.,
2005
,
Product Platform and Product Family Design: Methods and Applications
,
Springer
,
New York
.
2.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
3.
Swanstrom
,
L.
,
2009
, “
Greening the Gate Model
,”
ABB Rev.
,
2
, pp.
23
24
.
4.
Leu
,
P.
, and
Rytoft
,
C.
, eds.,
2010
, “
Special Report IEC 61850
,”
ABB Rev.
, Aug., p.
62
.https://library.e.abb.com/public/a56430e1e7c06fdfc12577a00043ab8b/3BSE063756_en_ABB_Review_Special_Report_IEC_61850.pdf
5.
Anderstig
,
S.
,
Eklund
,
D.
,
2012
, “
Development of Production Concept
,” Master's thesis Mälardalen University, Västerås, Sweden.
6.
Altfeld
,
H.-H.
,
2010
,
Commercial Aircraft Projects: Managing the Development of Highly Complex Products
,
Ashgate Publishing, Ltd.
,
Farnham, UK
.
7.
Vavoski
,
S.
,
2002
,
A Global Sourcing Strategy for Durable Tooling
,
MIT
,
Cambridge, MA
.
8.
Hutton
,
T.
,
2004
,
ACE Versus Six Sigma
,
MIT
,
Cambridge, MA
.
9.
LeBlanc
,
A.
,
2006
, “
Integrating Value Methodologies Into Product Development and Project Management Processes at Pratt and Whitney Canada
,”
Value World
,
29
(
2
), pp.
2
7
.
10.
Gokal
,
R.
,
2010
, “
New Product Development: Examining the Art of the Possible Whilst Imagining the Future
,”
HTI Cummins Turbo Technol.
,
14
, pp.
7
8
.
11.
Hoffman
,
C.
, and
Maher
,
R.
,
2010
, “
How Cognition Cockpit Improves Development Processes at Cummins, Inc.
,”
Cognition Corporation
,
Lexington, MA
.
12.
Hauksdottir
,
D.
,
Vermehren
,
A.
, and
Savolainen
,
J.
,
2012
, “
Requirements Reuse at Danfoss
,”
IEEE Requirements Engineering Conference
, IEEE, Chicago, IL, Sept. 24–28, pp.
309
314
.
13.
Kvist
,
M.
,
2010
, “
Product Family Assessment
,” Ph.D. thesis, Danish Technical University, Copenhagen, Denmark.
14.
Matzen
,
D.
,
2009
, “
A Systematic Approach to Service Oriented Product Development
,” Ph.D. thesis, Danish Technical University, Copenhagen, Denmark.
15.
Soderborg
,
N. R.
,
2004
, “
Design for Six Sigma at Ford
,”
Six Sigma Forum Mag.
,
4
(
1
), pp.
15
22
.
16.
Šurinová
,
Y.
,
2009
, “
Ford's System for Cost Reduction Due to Development Time
,” Materials Science and Technology, (
9
)1.
17.
Bauer
,
R. A.
,
Collar
,
E.
,
Tang
,
V.
,
Wind
,
J.
,
and Houston
,
P. R.
,
1992
,
The Silverlake Project: Transformation at IBM
,
Oxford University Press
,
New York
.
18.
Tang
,
V.
, and
Bauer
,
R.
,
1995
,
Competitive Dominance: Beyond Strategic Advantage and Quality Management
,
Wiley
,
New York
.
19.
ITT Industries
,
2002
, “
VBPD: Filling the Product Pipeline With Sure Winners
,” In Our Hands Extra, http://www.itt.com/iohextra/rel13/text-article1.html
20.
Reed
,
T.
,
2004
,
Integrating Design for Assembly and Manufacturing Into ITT Industries' New Product Development Process
, 2nd ed.,
DFMA Forum
,
Newport, RI
.
21.
Kim
,
S.
,
2012
, “
SSPL Strategy in Electronics Industry
,” Software and System Product Line Seminar, KOSTA, Seoul, South Korea, Oct. 16.
22.
Tegel
,
D.
, and
Kriva
,
R.
,
2004
, “
Motorola—Incorporating Six Sigma Into New Product Development
,”
PDMA Visions Mag.
,
28
(
4
), pp.
14
16
.
23.
Churchill
,
G.
, and
Iacobucci
,
D.
,
2004
,
Marketing Research: Methodological Foundations
, 9th ed.,
South-Western College Publishing
,
Cincinnati, OH
.
24.
Cleveland
,
M.
,
Papadopoulos
,
N.
, and
Laroche
,
M.
,
2011
, “
Identity, Demographics, and Consumer Behaviors
,”
Int. Mark. Rev.
,
28
(
3
), pp.
244
266
.
25.
Moon
,
S. K.
,
Kumara
,
S. R. T.
, and
Simpson
,
T. W.
,
2006
, “
Data Mining and Fuzzy Clustering to Support Product Family Design
,” ASME Paper No. DETC2006-99287.
26.
Zhang
,
Y.
,
Jiao
,
J.
, and
Ma
,
Y.
,
2007
, “
Market Segmentation for Product Family Positioning Based on Fuzzy Clustering
,”
J. Eng. Des.
,
18
(
3
), pp.
227
241
.
27.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2009
, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
,
47
(
1
), pp.
71
104
.
28.
Kotler
,
P.
, and
Keller
,
K.
,
2009
,
Marketing Management
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms: Building Value and Cost Leadership
,
The Free Press
,
New York
.
30.
Suh
,
E.
,
de Weck
,
O.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.
31.
Lei
,
N.
, and
Moon
,
S. K.
,
2015
, “
A Decision Support System for Market-Driven Product Positioning and Design
,”
Decis. Support Syst.
,
69
, pp.
82
91
.
32.
Simpson
,
T. W.
,
Bobuk
,
A.
,
Slingerland
,
L. A.
,
Brennan
,
S.
,
Logan, D. and Reichard
,
K.
,
2012
, “
From User Requirements to Commonality Specifications: An Integrated Approach to Product Family Design
,”
Res. Eng. Des.
,
23
(
2
), pp.
141
153
.
33.
Hauser
,
J.
, and
Griffin
,
A.
,
1993
, “
The Voice of the Customer
,”
Mark. Sci.
,
12
(
1
), pp.
1
27
.
34.
Yu
,
J. S.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
1999
, “
Product Architecture Definition Based Upon Customer Demand
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
329
335
.
35.
Kano
,
N.
, et al.,
1984
, “
Attractive Quality and Must-Be Quality
,”
J. Jpn. Soc. Qual. Control
,
14
(
2
), pp.
39
48
.
36.
Wang
,
T.
, and
Ji
,
P.
,
2010
, “
Understanding Customer Needs Through Quantitative Analysis of Kano's Model
,”
Int. J. Qual. Reliab. Manage.
,
27
(
2
), pp.
173
184
.
37.
Schuh
,
G.
, and
Tanner
,
H.
,
1998
, “
Mastering Variant Variety Using the Variant Mode and Effects Analysis
,”
ASME
Paper No. DETC98/DFM-5736.
38.
Harlou
,
U.
,
2006
, “
Developing Product Families Based on Architectures: Contribution to a Theory of Product Families
,” Ph.D. thesis, Department of Mechanical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
39.
Eilmus
,
S.
,
Gebhardt
,
N.
,
Rettberg
,
R.
,
Krause
,
D.
,
2012
, “
Evaluating A Methodical Approach for Developing Modular Product Families in Industrial Case Studies
,”
The 12th International Design Conference, DESIGN2012
, Design Societies, Dubrovnik, Croatia, pp.
837
846
.
40.
Krause
,
D.
,
Beckmann
,
G.
,
Eilmus
,
S.
,
Gebhardt
,
N.
,
Jonas
,
H.
,
Rettberg
,
R.
,
2014
, “
Integrated Development of Modular Product Families: A Methods Toolkit
,”
Advances in Product Family and Product Platform Design
,
T. W.
Simpson
,
Jiao
,
J.
,
Siddique
,
Z.
,
Hölttö-Otto
,
K.
, eds.,
Springer
,
New York
, pp.
245
269
.
41.
Hauser
,
J. R.
, and
Clausing
,
D.
,
1988
, “
The House of Quality
,”
Harv. Bus. Rev.
,
66
(
3
), pp.
63
73
.
42.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2004
,
Product Design and Development
, 3rd ed.,
McGraw-Hill/Irwin
,
New York
.
43.
INCOSE
,
2010
, “
INCOSE Systems Engineering Handbook v3.2
,” International Council on Systems Engineering, www.incose.org
44.
Simpson
,
T. W.
,
Jiao
,
J.
,
Siddique
,
Z.
,
and Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design
,
Springer-Verlag
,
New York
.
45.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
46.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
47.
Donaldson
,
B.
,
2010
, “
Application of Product Family Design Tools to Unmanned Ground Vehicles
,” Master's thesis, Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA.
48.
Suh
,
N. P.
,
1990
,
The Principles of Design
,
Oxford University Press
,
New York
.
49.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
50.
Jiao
,
J.
, and
Zhang
,
Y.
,
2005
, “
Product Portfolio Identification Based on Association Rule Mining
,”
Comput.-Aided Des.
,
37
(
2
), pp.
149
172
.
51.
Schuh
,
G.
,
Arnoscht
,
J.
, and
Rudolf
,
S.
,
2010
, “
Integrated Development of Modular Product Platforms
,”
2010 Technology Management for Global Economic Growth (PICMET), PICMET’10
, IEEE, Phuket, Thailand, July 18–22, pp.
1928
1940
.
52.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
, 2nd ed.,
K.
Wallace
, ed.,
Springer-Verlag
,
New York
.
53.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
54.
Ericsson
,
A.
, and
Erixon
,
G.
,
1999
,
Controlling Design Variants: Modular Product Platforms
,
ASME
,
New York
.
55.
Luo
,
X.
,
Tang
,
J.
, and
Kwong
,
C.
,
2010
, “
A QFD-Based Optimization Method for a Scalable Product Platform
,”
Eng. Optim.
,
42
(
2
), pp.
141
156
.
56.
Steward
,
A. D.
,
1981
, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Software Eng.
,
28
(
3
), pp.
71
74
.
57.
Eppinger
,
S. D.
,
Whitney
,
D. E.
,
Smith
,
R. P.
, and
Gebala
,
D. A.
,
1994
, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
,
6
(
1
), pp.
1
13
.
58.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
.
59.
Chiriac
,
N.
,
Hölttä-Otto
,
K.
,
Lysy
,
D.
,
Suh
,
E. S.
,
2011
, “
Three Approaches to Complex System Decomposition
,”
13th International Dependency and Structure Modeling Conference
, Cambridge, MA, pp.
3
17
.
60.
Andreasen
,
M. M.
,
1980
, “
Syntesemetoder på Systemgrundlag-Bidrag Til En Konstruktionsteori
,” Ph.D. thesis, Department of Machine Design, Lund Institute of Technology, Lund, Sweden.
61.
Bruun
,
H. P. L.
,
Mortensen
,
N. H.
, and
Harlou
,
U.
,
2014
, “
Interface Diagram: Design Tool for Supporting the Development of Modularity in Complex Product Systems
,”
Concurrent Eng.
,
22
(
1
), pp.
62
76
.
62.
Blanchard
,
B. S.
, and
Fabrycky
,
W. J.
,
2010
,
Systems Engineering and Analysis
, 5th ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
63.
Maier
,
M. W.
, and
Rechtin
,
E.
,
2000
,
The Art of Systems Architecting
, 2nd ed.,
CRC Press
,
New York
.
64.
Crawley
,
E. F.
,
de Weck
,
O. L.
,
Eppinger
,
S.
,
Magee
,
C.
,
Moses
,
J.
,
Seering
,
W.
,
Schindall
,
J.
,
Wallace
,
D.
,
and Whitney
,
D.
,
2004
,
The Influence of Architecture in Engineering Systems
,
MIT
,
Cambridge, MA
.
65.
Brière-Côté
,
A.
,
Rivest
,
L.
, and
Desrochers
,
A.
,
2010
, “
Adaptive Generic Product Structure Modeling for Design Reuse in Engineer-to-Order Products
,”
Comput. Ind.
,
61
(
1
), pp.
53
65
.
66.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2003
, “
Product Modularity: Measures and Design Methods
,”
J. Eng. Des.
,
15
(
1
), pp.
33
51
.
67.
Fixson
,
S. K.
,
2007
, “
Modularity and Commonality Research: Past Developments and Future Opportunities
,”
Concurrent Eng.: Res. Appl.
,
15
(
2
), pp.
85
111
.
68.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method to Identify Modules From a Functional Description of a Product
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
69.
Zamirowksi
,
E. J.
, and
Otto
,
K. N.
,
1999
, “
Identifying Product Portfolio Architecture Modularity Using Function and Variety Heuristics
,” ASME Paper No. DETC99/DTM-8760.
70.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2001
, “
Modular Product Architecture
,”
Des. Stud.
,
22
(
5
), pp.
409
424
.
71.
Helmer
,
R.
,
Yassine
,
A.
, and
Meier
,
C.
,
2010
, “
Systematic Module and Interface Definition Using Component Design Structure Matrix
,”
J. Eng. Des.
,
21
(
6
), pp.
647
675
.
72.
Yu
,
T.-L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.
73.
Thebeau
,
R.
,
2001
,
Knowledge Management of System Interfaces and Interactions for Product Development Process, in System Design and Management Program
,
MIT
,
Cambridge, MA
.
74.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2012
, “
Improved Clustering Algorithm for Design Structure Matrix
,”
ASME
Paper No. DETC2012-70076.
75.
Holtta-Otto
,
K.
, and
de Weck
,
O.
,
2007
, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurrent Eng.: Res. Appl.
,
15
(
2
), pp.
113
126
.
76.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2014
, “
A Module Generation Algorithm for Product Architecture Based on Component Interactions and Strategic Drivers
,”
Res. Eng. Des.
,
25
(
1
), pp.
31
51
.
77.
Hölttä-Otto
,
K.
,
Chiriac
,
N. A.
,
Lysy
,
D.
, and
Suh
,
E. S.
,
2012
, “
Comparative Analysis of Coupling Modularity Metrics
,”
J. Eng. Des.
,
23
(
10–11
), pp.
790
806
.
78.
Guo
,
F.
, and
Gershenson
,
J. K.
,
2004
, “
A Comparison of Modular Product Design Methods Based on Improvement and Iteration
,”
ASME
Paper No. DETC2004-57396.
79.
Moon
,
S.
,
Simpson
,
T.
, and
Kumara
,
S. T.
,
2010
, “
A Methodology for Knowledge Discovery to Support Product Family Design
,”
Ann. Oper. Res.
,
174
(
1
), pp.
201
218
.
80.
Hölttä-Otto
,
K.
,
Tang
,
V.
, and
Otto
,
K.
,
2008
, “
Analyzing Module Commonality for Platform Design Using Dendrograms
,”
Res. Eng. Des.
,
19
(
2–3
), pp.
127
141
.
81.
Moon
,
S. K.
, and
McAdams
,
D. A.
,
2012
, “
A Market-Based Design Strategy for a Universal Product Family
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111007
.
82.
Moon
,
S. K.
,
Park
,
J.
,
Simpson
,
T. W.
,
and Kumara
,
S. R. T.
,
2008
, “
A Dynamic Multi-Agent System Based on a Negotiation Mechanism for Product Family Design
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
234
244
.
83.
Moon
,
S.
,
Park
,
K.
, and
Simpson
,
T.
,
2014
, “
Platform Design Variable Identification for a Product Family Using Multi-Objective Particle Swarm Optimization
,”
Res. Eng. Des.
,
25
(
2
), p.
95108
.
84.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
85.
Lei
,
N.
, and
Moon
,
S. K.
,
2014
, “
Decision Support Systems Design for Data-Driven Management
,”
ASME
Paper No. DETC2014-34871.
86.
Albright
,
R.
,
2002
, “
How to Use Roadmapping for Global Platform Products
,”
PDMA Visions Mag.
,
24
(
4
), pp.
19
22
.
87.
Cosner
,
R.
,
Hynds
,
E. J.
,
Fusfeld
,
A. R.
, and
Albright
,
R.
,
2007
, “
Integrating Roadmapping Into Technical Planning
,”
Res. Technol. Manage.
,
50
(
6
), pp.
31
48
.
88.
Allan
,
A.
,
Edenfeld
,
D.
,
Joyner
,
W. H.
, Jr.
,
Rodgers
,
M.
, and
Zorian
,
Y.
,
2002
, “
2001 Technology Roadmap for Semiconductors
,”
Computer
,
35
(
1
), pp.
42
53
.
89.
Edenfeld
,
D.
,
Kahng
,
A. B.
,
Rodgers
,
M.
, and
Zorian
,
Y.
,
2004
, “
2003 Technology Roadmap for Semiconductors
,”
Computer
,
37
(
1
), pp.
47
56
.
90.
Willyard
,
C. H.
, and
McClees
,
C. W.
,
1987
, “
Motorola's Technology Roadmap Process
,”
Res. Manage.
,
30
(
5
), pp.
13
19
.
91.
Daima
,
T. U.
, and
Oliverb
,
T.
,
2008
, “
Implementing Technology Roadmap Process in the Energy Services Sector: A Case Study of a Government Agency
,”
Technol. Forecasting Soc. Change
,
75
(
5
), pp.
687
720
.
92.
Wheelwright
,
S. C.
, and
Sasser
,
W. E.
, Jr.
,
1989
, “
The New Product Development Map
,”
Harv. Bus. Rev.
,
67
(
3
), p.
112
.
93.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms: Building Value and Cost Leadership
, Vol.
10020
,
The Free Press
,
New York
.
94.
Lee
,
S.
, and
Park
,
Y.
,
2005
, “
Customization of Technology Roadmaps According to Roadmapping Purposes: Overall Process and Detailed Modules
,”
Technol. Forecasting Soc. Change
,
72
(
5
), pp.
567
583
.
95.
Schuh
,
G.
,
Schiffer
,
M.
, and
Arnoscht
,
J.
,
2012
, “
Scenario Based Development of Robust Product Architectures
,”
PICMET’12: Technology Management for Emerging Technologies
, Vancouver, BC, July 29–Aug. 2, pp.
2542
2549
.
96.
Chan
,
S. L.
, and
Ip
,
W. H.
,
2011
, “
A Dynamic Decision Support System to Predict the Value of Customer for New Product Development
,”
Decis. Support Syst.
,
52
(
1
), pp.
178
188
.
97.
Bollen
,
N. P. B.
,
1999
, “
Real Options and Product Life Cycles
,”
Manage. Sci.
,
45
(
5
), pp.
670
684
.
98.
Smit
,
H. T. J.
, and
Trigeorgis
,
L.
,
2004
,
Strategic Investment: Real Options and Games
,
Princeton University Press
,
Princeton, NJ
.
99.
Jiao
,
J.
,
Lim
,
C. M.
, and
Kumar
,
A.
,
2006
, “
Real Options Identification and Valuation for the Financial Analysis of Product Family Design
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
6
), pp.
929
939
.
100.
Gamba
,
A.
, and
Fusari
,
N.
,
2009
, “
Valuing Modularity as a Real Option
,”
Manage. Sci.
,
55
(
11
), pp.
1877
1896
.
101.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2006
, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Des.
,
17
(
2
), pp.
99
119
.
102.
Fujita
,
K.
, and
Yoshida
,
H.
,
2004
, “
Product Variety Optimization Simultaneously Designing Module Combination and Module Attributes
,”
Concurrent Eng.
,
12
(
2
), pp.
105
118
.
103.
Khire
,
R.
,
Wang
,
J.
,
Bailey
,
T.
,
Lin
,
Y.
,
and Simpson
,
T. W.
,
2008
, “
Product Family Commonality Selection Through Interactive Visualization
,”
ASME
Paper No. DETC2008-49335.
104.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2009
, “
A Market-Driven Approach to the Design of Platform-Based Product Families
,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, Sept. 6–8.
105.
Dai
,
Z.
, and
Scott
,
M. J.
,
2007
, “
Product Platform Design Through Sensitivity Analysis and Cluster Analysis
,”
J. Intell. Manuf.
,
18
(
1
), pp.
97
113
.
106.
Liu
,
Y.
,
Yin
,
X.
,
Arendt
,
P. D.
, and
Huang
,
H. Z.
,
2010
, “
A Hierarchical Statistical Sensitivity Analysis Method for Multilevel Systems With Shared Variables
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031006
.
107.
Hernandez
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2003
, “
Platform Design for Customizable Products as a Problem of Access in a Geometric Space
,”
Eng. Optim.
,
35
(
3
), pp.
229
254
.
108.
Chowdhury
,
S.
,
Messac
,
A.
, and
Khire
,
R. A.
,
2011
, “
Comprehensive Product Platform Planning (CP3) Framework
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101004
.
109.
Chowdhury
,
S.
,
Maldonado
,
L.
,
Tong
,
W.
, and
Messac
,
A.
,
2013
, “
Comprehensive Product Platform Planning (cp3) for a Modular Family of Unmanned Aerial Vehicles
,”
ASME
Paper No. DETC2013-13181.
110.
Han
,
J.
, and
Papalambros
,
P.
,
2010
, “
A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021033
.
111.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
,
2005
, “
Analytical Target Cascading in Product Family Design
,”
Product Platform and Product Family Design: Methods and Applications
,
T. W.
Simpson
,
Z.
Siddique
, and
J.
Jiao
, eds.,
Springer
,
New York
.
112.
Seepersad
,
C. C.
,
Hernandez
,
G.
, and
Allen
,
J. K.
,
2000
, “
A Quantitative Approach to Determining Product Platform Extent
,”
ASME
Paper No. DETC2002/DAC-34096.
113.
de Weck
,
O.
,
2005
, “
Determining Product Platform Extent
,”
Product Platform and Product Family Design: Methods and Applications
,
T. W.
Simpson
,
Z.
Siddique
, and
J.
Jiao
, eds.,
Springer
,
New York
.
114.
Blees
,
C.
, and
Krause
,
D.
,
2008
, “
On the Development of Modular Product Structures: A Differentiated Approach
,”
10th International Design Conference—Design 2008
, Dubrovnik, Croatia, pp.
301
308
.
115.
Gebhardt
,
N.
,
Bahns
,
T.
, and
Krause
,
D.
,
2014
, “
An Example of Visually Supported Design of Modular Product Families
,”
24th CIRP Design Conference
, Milano, Italy, pp.
75
80
.
116.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2001
, “
Assessing Value for Platformed Product Family Design
,”
Res. Eng. Des.
,
13
(
1
), pp.
30
41
.
117.
Saari
,
D. G.
, and
Sieberg
,
K. K.
,
2004
, “
Are Partwise Comparisons Reliable?
,”
Res. Eng. Des.
,
15
(
1
), pp.
62
71
.
118.
Saari
,
D. G.
,
2010
, “
Aggregation and Multilevel Design for Systems: Finding Guidelines
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081006
.
119.
Frey
,
D.
,
Herder
,
P.
,
Wijnia
,
Y.
,
Subrahmanian
,
E.
,
Katsikopoulos
,
K.
,
and Clausing
,
D.
,
2009
, “
The Pugh Controlled Convergence Method: Model-Based Evaluation and Implications for Design Theory
,”
Res. Eng. Des.
,
20
(
1
), pp.
41
45
.
120.
Stake
,
R.
,
2000
,
On Conceptual Development of Modular Products—Development of Supporting Tools for the Modularisation Process
,
KTH, Stockholm
,
Sweden
.
121.
Stake
,
R.
, and
Blackenfeldt
,
M.
,
1998
, “
Modularity in Use—Experiences From Five Companies
,”
4th WDK Workshop on Product Structuring
, Delft, The Netherlands, Oct. 22–23, pp.
11
26
.
122.
Otto
,
K. N.
, and
Jacobson
,
C.
,
2012
, “
Using Model Uncertainty to Reduce Verification and Validation in Noise and Vibration Problems
,”
ASME
Paper No. DETC2012-70929.
123.
Wellsandt
,
S.
, and
Cerri
,
D.
,
2015
, “
Manutelligence: Product Service Design and Manufacturing Intelligence Engineering Program
,” Document D2.1, www.manutelligence.eu
124.
Becz
,
S.
,
Pinto
,
A.
,
Zeidner
,
L.
,
Khire
,
R.
,
Reeve
,
H.
, and
Banaszuk
,
A.
,
2010
, “
Design System for Managing Complexity in Aerospace Systems
,” 10th AIAA Aviation Technology, Integration, and Operations Conference, Fort Worth, TX, Sept. 13–15, AIAA 2010-9223.
You do not currently have access to this content.