A product family is a set of products that are derived from common sets of parts, interfaces, and processes, known as the product platform. To reduce development time and procurement and operating costs of product platform-based variants, the product platform can be designed after consideration of several characteristics, such as modularity, flexibility, sustainability, and complexity. In this paper, the product platform is viewed from the perspective of system architecting. The architectural complexities of both the platform and its variants, which together constitute a product family, can be quantitatively assessed using a specifically tailored metric. This will aid system architects in designing product platforms and resulting product variants with an emphasis on reducing complexity. Architectural complexity management is demonstrated through a case study of a train bogie platform.

References

1.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
1
), pp.
3
20
.
2.
McGrath
,
M. E.
,
1995
,
Product Strategy for High-Technology Companies: How to Achieve Growth, Competitive Advantage, and Increased Profits
,
Irwin Professional Publishing
,
Burr Ridge, IL
.
3.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms: Building Value and Cost Leadership
,
Free Press
,
New York
.
4.
Robertson
,
D.
, and
Ulrich
,
K.
,
1998
, “
Planning for Product Platforms
,”
Sloan Manage. Rev.
,
39
(
4
), pp.
19
31
.
5.
Sanderson
,
S. W.
, and
Uzumeri
,
M.
,
1997
,
Managing Product Families
,
Irwin Professional Publishing
,
Chicago, IL
.
6.
Bremmer
,
R.
,
1999
, “
Cutting-Edge Platforms
,”
Financ. Times Automot. World
,
9
, pp.
30
38
.
7.
Muffatto
,
M.
,
1999
, “
Introducing a Platform Strategy in Product Development
,”
Int. J. Prod. Econ.
,
60–61
, pp.
145
153
.
8.
Simchi-Levi
,
D.
,
Kaminsky
,
P.
, and
Simchi-Levi
,
E.
,
2008
,
Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies
,
McGraw-Hill/Irwin
,
Boston, MA
.
9.
Thomas
,
E. F.
,
2014
, “
Platform-Based Product Design and Environmental Turbulence: The Mediating Role of Strategic Flexibility
,”
Eur. J. Innovation Manage.
,
17
(
1
), pp.
107
124
.
10.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2012
,
Product Design and Development
,
McGraw-Hill/Irwin
,
New York
.
11.
Fisher
,
M.
,
Ramdas
,
K.
, and
Ulrich
,
K.
,
1999
, “
Component Sharing in the Management of Product Variety: A Study of Automotive Braking Systems
,”
Manage. Sci.
,
45
(
3
), pp.
297
315
.
12.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications, Engineering Systems
,
MIT Press
,
Cambridge, MA
.
13.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
,
2000
,
Design Rules
,
MIT Press
,
Cambridge, MA
.
14.
Erixon
,
G.
,
1998
, “
MFD-Modular Function Deployment: A Systematic Method and Procedure for Company Supportive Product Modularisation
,” Ph.D. thesis, The Royal Institute of Technology, Stockholm, Sweden.
15.
Börjesson
,
F.
,
2014
, “
Modular Function Deployment Applied to a Cordless Handheld Vacuum
,”
Advances in Product Family and Product Platform Design
,
Springer
,
New York
, pp.
605
623
.
16.
Börjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2014
, “
A Module Generation Algorithm for Product Architecture Based on Component Interactions and Strategic Drivers
,”
Res. Eng. Des.
,
25
(
1
), pp.
31
51
.
17.
Blackenfeldt
,
M.
,
2001
, “
Managing Complexity by Product Modularisation
,”
Ph.D. thesis
, Royal Institute of Technology, Stockholm, Sweden.
18.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
19.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
London
.
20.
Fan
,
B. B.
,
Qi
,
G. N.
,
Hu
,
X. M.
, and
Yu
,
T.
,
2015
, “
A Network Methodology for Structure-Oriented Modular Product Platform Planning
,”
J. Intell. Manuf.
,
26
(
3
), pp.
553
570
.
21.
Hanafy
,
M.
, and
Elmaraghy
,
H.
,
2015
, “
A Modular Product Multi-Platform Configuration Model
,”
Int. J. Comput. Integr. Manuf.
,
28
(
9
), pp.
999
1014
.
22.
Sabbagh
,
K.
,
1996
,
21st Century Jet: The Making and Marketing of the Boeing 777
,
Scribner
,
New York
.
23.
Oakley
,
M.
,
1990
,
Design Management: A Handbook of Issues and Methods
,
Blackwell Reference
,
Oxford, UK
.
24.
Simpson
,
T. W.
,
Maier
,
J. R. A.
, and
Mistree
,
F.
,
2001
, “
Product Platform Design: Method and Application
,”
Res. Eng. Des. Theory Appl. Concurrent Eng.
,
13
(
1
), pp.
2
22
.
25.
Suh
,
E. S.
,
De Weck
,
O. L.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.
26.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2001
, “
Assessing Value in Platformed Product Family Design
,”
Res. Eng. Des. Theory Appl. Concurrent Eng.
,
13
(
1
), pp.
30
41
.
27.
Trigeorgis
,
L.
,
1996
,
Real Options: Managerial Flexibility and Strategy in Resource Allocation
,
MIT Press
,
Cambridge, MA
.
28.
Raudberget
,
D.
,
Levandowski
,
C.
,
Isaksson
,
O.
,
Kipouros
,
T.
,
Johannesson
,
H.
, and
Clarkson
,
J.
,
2015
, “
Modelling and Assessing Platform Architectures in Pre-Embodiment Phases Through Set-Based Evaluation and Change Propagation
,”
J. Aerosp. Oper.
,
3
(
3–4
), pp.
203
221
.
29.
Collier
,
D. A.
,
1981
, “
The Measurement and Operating Benefits of Component Part Commonality
,”
Decis. Sci.
,
12
(
1
), pp.
85
96
.
30.
Jiao
,
J. X.
, and
Tseng
,
M. M.
,
2000
, “
Understanding Product Family for Mass Customization by Developing Commonality Indices
,”
J. Eng. Des.
,
11
(
3
), pp.
225
243
.
31.
Siddique
,
Z.
,
Rosen
,
D.
, and
Wang
,
N.
,
1998
, “
On the Applicability of Product Variety Design Concepts to Automotive Platform Commonality
,”
ASME
Paper No. DETC 98/DTM-5661.
32.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
,
2000
, “
A Metric for Evaluating Design Commonality in Product Families
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
403
410
.
33.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des. Theory Appl. Concurrent Eng.
,
13
(
4
), pp.
213
235
.
34.
Mcadams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
35.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
,
2002
, “
Introduction of a Product Family Penalty Function Using Physical Programming
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
164
172
.
36.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
2002
, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
Struct. Multidiscip. Optim.
,
24
(
4
), pp.
293
301
.
37.
Li
,
H.
, and
Azarm
,
S.
,
2002
, “
An Approach for Product Line Design Selection Under Uncertainty and Competition
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
385
392
.
38.
Simpson
,
T. W.
, and
D'souza
,
B. S.
,
2004
, “
Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm
,”
Concurrent Eng. Res. Appl.
,
12
(
2
), pp.
119
129
.
39.
Hernandez
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2003
, “
Platform Design for Customizable Products as a Problem of Access in a Geometric Space
,”
Eng. Optim.
,
35
(
3
), pp.
229
254
.
40.
Nelson
,
S. A.
,
Parkinson
,
M. B.
, and
Papalambros
,
P. Y.
,
2001
, “
Multicriteria Optimization in Product Platform Design
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
199
204
.
41.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
42.
Jiao
,
J. X.
, and
Tseng
,
M. M.
,
1999
, “
A Methodology of Developing Product Family Architecture for Mass Customization
,”
J. Intell. Manuf.
,
10
(
1
), pp.
3
20
.
43.
Newcomb
,
P. J.
,
Bras
,
B.
, and
Rosen
,
D. W.
,
1998
, “
Implications of Modularity on Product Design for the Life Cycle
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
483
490
.
44.
Suh
,
E. S.
, and
Kott
,
G.
,
2010
, “
Reconfigurable Parallel Printing System Design for Field Performance and Service Improvement
,”
ASME J. Mech. Des.
,
132
(
3
), p.
034505
.
45.
Sinha
,
K.
,
2014
, “
Structural Complexity and Its Implications for Design of Cyber Physical Systems
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
46.
Lindemann
,
U.
,
Maurer
,
M.
, and
Braun
,
T.
,
2009
,
Structural Complexity Management: An Approach for the Field of Product Design
,
Springer
,
Berlin
.
47.
Malik
,
F. F.
,
1984
,
Strategie Des Managements Komplexer Systeme: Ein Beitrag Zur Management-Kybernetik EvolutionaüRer Systeme, Schriftenreihe Unternehmung Und UnternehmungsfuüHrung
,
Haupt
,
Stuttgart, Germany
.
48.
Riedl
,
R.
,
2000
,
Strukturen Der KomplexitaüT: Eine Morphologie Des Erkennens Und ErklaüRens
,
Springer
,
Berlin
.
49.
McCabe
,
T. J.
,
1976
, “
A Complexity Measure
,”
IEEE Trans. Software Eng.
,
4
, pp.
308
320
.
50.
Kafura
,
D.
, and
Henry
,
S.
,
1981
, “
Software Quality Metrics Based on Inter-Connectivity
,”
J. Syst. Software
,
2
(
2
), pp.
121
131
.
51.
Halstead
,
M. H.
,
1977
,
Elements of Software Science, Operating and Programming Systems Series
,
Elsevier
,
New York
.
52.
Bralla
,
J. G.
,
1986
,
Handbook of Product Design for Manufacturing: A Practical Guide to Low-Cost Production
,
McGraw-Hill
,
New York
.
53.
Whitney
,
D.
,
Dong
,
Q.
,
Judson
,
J.
, and
Mascoli
,
G.
,
1999
, “
Introducing Knowledge-Based Engineering Into an Interconnected Product Development Process
,” ASME Paper No. DETC99/DTM-8741.
54.
Sinha
,
K.
, and
De Weck
,
O.
,
2013
, “
Structural Complexity Quantification for Engineered Complex Systems and Implications on System Architecture and Design
,”
ASME
Paper No. DETC2013-12013.
55.
Tamaskar
,
S.
,
Neema
,
K.
, and
Delaurentis
,
D.
,
2014
, “
Framework for Measuring Complexity of Aerospace Systems
,”
Res. Eng. Des.
,
25
(
2
), pp.
125
137
.
56.
Navarrete
,
I. A.
, and
Guzman
,
A. A. L.
,
2013
, “
Reduction of Product Platform Complexity by Vectorial Euclidean Algorithm
,”
J. Mech. Sci. Technol.
,
27
(
11
), pp.
3371
3379
.
57.
Nikiforov
,
V.
,
2007
, “
The Energy of Graphs and Matrices
,”
J. Math. Anal. Appl.
,
326
(
2
), pp.
1472
1475
.
58.
Min
,
G.
,
Suh
,
E. S.
, and
Hölttä-Otto
,
K.
,
2016
, “
System Architecture, Level of Decomposition, and Structural Complexity: Analysis and Observations
,”
ASME J. Mech. Des.
,
138
(
2
), p.
021102
.
You do not currently have access to this content.