Simulation models are widely used to describe processes that would otherwise be arduous to analyze. However, many of these models merely provide an estimated response of the real systems, as their input parameters are exposed to uncertainty, or partially excluded from the model due to the complexity, or lack of understanding of the problem's physics. Accordingly, the prediction accuracy can be improved by integrating physical observations into low fidelity models, a process known as model calibration or model fusion. Typical model fusion techniques are essentially concerned with how to allocate information-rich data points to improve the model accuracy. However, methods on subtracting more information from already available data points have been starving attention. Subsequently, in this paper we acknowledge the dependence between the prior estimation of input parameters and the actual input parameters. Accordingly, the proposed framework subtracts the information contained in this relation to update the estimated input parameters and utilizes it in a model updating scheme to accurately approximate the real system outputs that are affected by all real input parameters (RIPs) of the problem. The proposed approach can effectively use limited experimental samples while maintaining prediction accuracy. It basically tweaks model parameters to update the computer simulation model so that it can match a specific set of experimental results. The significance and applicability of the proposed method is illustrated through comparison with a conventional model calibration scheme using two engineering examples.

References

1.
Le Gratiet
,
L.
,
2013
, “
Bayesian Analysis of Hierarchical Multifidelity Codes
,”
SIAM/ASA J. Uncertainty Quantif.
,
1
(
1
), pp.
244
269
.
2.
Goh
,
J.
,
Bingham
,
D.
,
Holloway
,
J. P.
,
Grosskopf
,
M. J.
,
Kuranz
,
C. C.
, and
Rutter
,
E.
,
2013
, “
Prediction and Computer Model Calibration Using Outputs From Multifidelity Simulators
,”
Technometrics
,
55
(
4
), pp.
501
512
.
3.
Akil
,
N.
,
Claude
,
G.
, and
Dongbin
,
X.
,
2014
, “
A Stochastic Collocation Algorithm With Multifidelity Models
,”
SIAM J. Sci. Comput.
,
36
(
2
), pp.
A495
A521
.
4.
Shishi
,
C.
,
Zhen
,
J.
,
Shuxing
,
Y.
,
Faniel
,
W.
, and
Wei
,
C.
,
2016
, “
Nonhierarchical Multi-Model Fusion Using Spatial Random Processes
,”
Int. J. Numer. Methods Eng.
,
106
(
7
), pp.
503
528
.
5.
Chen
,
S.
,
Jiang
,
Z.
,
Yang
,
S.
, and
Chen
,
W.
,
2016
, “
Multimodel Fusion Based Sequential Optimization
,”
AIAA J.
,
55
(
1
), pp.
241
254
.
6.
Kennedy
,
M. C.
, and
Hagan
,
A. O.
,
2001
, “
Bayesian Calibration of Computer Models
,”
R. Statisitcal Soc.
,
63
(
3
), pp.
425
465
.
7.
Wang
,
S.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2009
, “
Bayesian Validation of Computer Models
,”
Technometrics
,
51
(
4
), pp.
439
451
.
8.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
J. S. B.
, and
Henry
,
P. W.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statisitcal Sci.
,
4
(
4
), pp.
409
423
.
9.
Arendt
,
P. D.
, and
Apley
,
D. W.
,
2015
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p. 101402.
10.
Jiang
,
Z.
,
Li
,
W.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2015
, “
A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach With Model Uncertainty
,”
ASME J. Mech. Des.
,
137
(10), p. 101402.
11.
Zhu
,
Z.
,
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes
,”
ASME
Paper No. DETC2015-46168.
12.
Jiang
,
Z.
,
Chen
,
W.
, and
German
,
B. J.
,
2016
, “
Multidiciplinary Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties
,”
AIAA
,
54
(
4
), pp.
1326
1338
.
13.
Jiang, Z., Chen, S., Apley, D. W., and Chen, W., 2016, “
Reduction of Epistemic Model Uncertainty in Simulation-Based Multidisciplinary Design
,”
ASME J. Mech. Des.
,
138
(8), p. 081403.
14.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2004
,
Gaussian Processes for Machine Learning
, Vol.
1
,
MIT Press
, Cambridge, MA.
15.
Do
,
C. B.
,
2007
, “
Gaussian Processes
,” Stanford University, Stanford, CA, accessed Dec. 5, 2017, https://see.stanford.edu/materials/aimlcs229/cs229-gp.pdf
16.
Xi
,
Z.
, and
Yang
,
R.-J.
,
2015
, “
Stochastic Model Bias Correction of Dynamic System Responses for Simulation-Based Reliability Analysis
,”
ASME
Paper No. DETC2015-46938.
17.
Gorguluarslan
,
R. M.
, and
Choi
,
S.-K.
,
2014
, “
An Improved Stochastic Upscaling Method for Multiscale Engineering Systems
,”
ASME
Paper No. DETC2014-34418.
18.
Rosen
,
D. W.
, and
Park
,
S.-I.
,
2015
, “
Material Characterization of Additively Manufactured Part Via Multi-Level Stochastic Upscaling Method
,”
ASME
Paper No. DETC2015-46822.
19.
Mlakar
,
M.
,
Petelin
,
D.
,
Tušar
,
T.
, and
Filipič
,
B.
,
2015
, “
GP-DEMO: Differential Evolution for Multiobjective Optimization Based on Gaussian Process Models
,”
Eur. J. Oper. Res.
,
243
(
2
), pp.
347
361
.
20.
Wu
,
C.-C.
,
Chen
,
Z.
, and
Tang
,
G.-R.
,
1998
, “
Component Tolerance Design for Minimum Quality Loss and Manufacturing Cost
,”
Comput. Ind.
,
35
(
3
), pp.
223
232
.
21.
Yan
,
H.
,
Wu
,
X.
, and
Yang
,
J.
,
2015
, “
Application of Monte Carlo Method in Tolerance Analysis
,”
Procedia CIRP
,
27
(
13
), pp.
281
285
.
22.
Besag
,
J.
,
Green
,
P.
,
Higdon
,
D.
, and
Mengersen
,
K.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.http://www.stat.ohio-state.edu/~comp_exp/jour.club/Sacks89.pdf
23.
Song
,
W.
,
Lee
,
E.
,
Gea
,
H. C.
, and
Xu
,
L.
,
2015
, “
Topology Optimization With Load Uncertainty as an Inhomogeneous Eigenvalue Problem
,”
ASME
Paper No. DETC2015-46912.
24.
Zhu
,
Z.
, and
Du
,
X.
,
2015
, “
Extreme Value Metamodeling for System Reliability With Time-Dependent Functions
,”
ASME
Paper No. DETC2015-46162.
25.
Cho
,
H.
,
Choi
,
K.
, and
Lamb
,
D.
,
2014
, “
Confidence-Based Method for Reliability-Based Design Optimization
,”
ASME
Paper No. DETC2014-34644.
26.
Moon
,
M.-Y.
,
Choi
,
K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2015
, “
Development of a Conservative Model Validation Approach for Reliable Analysis
,”
ASME
Paper No. DETC2015-46982.
27.
Gaul
,
N. J.
,
Cowles
,
M. K.
,
Cho
,
H.
,
Choi
,
K. K.
, and
Lamb
,
D.
,
2015
, “
Modified Bayesian Kriging for Noisy Response Problems for Reliability Analysis
,”
ASME
Paper No. DETC2015-47370.
28.
Lichtenstern
,
A.
,
2013
, “
Kriging Methods in Spatial Statistics
,”
Bachelor's thesis
, Technische Universitat München, Munich, Germany, pp.
1
97
.http://mediatum.ub.tum.de/doc/1173364/file.pdf
29.
Wackernagel
,
H.
,
2013
, “
Geostatistical Structure Analysis: The Variogram
,” MINES ParisTech, Paris, France, accessed Dec. 5, 2017, http://hans.wackernagel.free.fr
30.
Tipping
,
M. E.
,
2006
, “
Bayesian Inference: An Introduction to Principles and Practice in Machine Learning From Least-Squares to Bayesian Inference
,”
Miketipping
,
1
(
1
), pp.
41
62
.http://www.miketipping.com/papers/met-mlbayes.pdf
31.
Gallager
,
R. G.
,
2013
,
Theory for Applications
, Vol.
3
,
Springer-Verlag
,
Berlin
.
32.
Bayram
,
U.
, and
Acar
,
E.
,
2015
, “
Tolerance Analysis With Multiple Surrogate Models
,”
Acta Phys. Polonica A
,
128
(
2
), pp.
447
449
.
33.
Wang
,
P.
, and
Cui
,
X.
,
2015
, “
Reliability Analysis and Design Considering Disjointed Active Failure Regions
,”
ASME
Paper No. IMECE2015-52985.
34.
Drignei
,
D.
,
Mourelatos
,
Z.
,
Kosova
,
E.
, and
Baseski
,
I.
,
2015
, “
Time-Dependent Reliability Using Metamodels With Transformed Random Inputs
,”
ASME
Paper No. DETC2015-46823.
35.
Hamel
,
J.
,
2015
, “
Sequential Cooperative Robust Optimization (Scro) for Multi-Objective Design Under Uncertainty
,”
ASME
Paper No. DETC2015-47885.
36.
Hans
,
W.
,
2003
,
An Introduction With Applications
, Vol.
3
,
Springer-Verlag
,
Berlin
.
37.
Richard
,
W.
, and
Margaret
,
A. O.
,
2007
,
Statistics in Practice
, Vol.
2
,
Wiley
,
Chichester, UK
.
38.
Wang
,
C.
,
Qiu
,
J.
,
Liu
,
G.
, and
Zhang
,
Y.
,
2014
, “
Testability Evaluation Using Prior Information of Multiple Sources
,”
Chin. J. Aeronaut.
,
27
(
4
), pp.
867
874
.
39.
Yu
,
K.
,
Chen
,
C. W.
,
Reed
,
C.
, and
Dunson
,
D. B.
,
2013
, “
Bayesian Variable Selection in Quantile Regression
,”
Stat. Its Interface
,
6
(
2
), pp.
261
274
.
40.
Moala
,
F.
,
Ramos
,
P.
, and
Achcar
,
J.
,
2013
, “
Bayesian Inference for Two-Parameter Gamma Distribution Assuming Different Noninformative Priors
,”
Rev. Colomb. Estadística
,
36
(
2
), pp.
321
338
.http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512013000200009
41.
Fink
,
D.
,
1997
, “
A Compendium of Conjugate Priors
,”
Mag. Western History
,
1
(
1
), pp.
1
47
.https://www.johndcook.com/CompendiumOfConjugatePriors.pdf
42.
Raiffa
,
H.
, and
Schlaifer
,
R.
,
1961
,
Applied Statistical Decision Theory
, 5 ed.,
Harvard University
,
Boston, MA
.
43.
Pandey
,
B. N.
, and
Bandyopadhyay
,
P.
,
2012
, “
Bayesian Estimation of Inverse Gaussian Distribution
,”
Stat. Comput. Simul.
,
1
(
1
), pp.
1
17
.https://arxiv.org/abs/1210.4524
44.
Banerjee
,
A. K.
, and
Bhattacharyya
,
G. K.
,
1979
, “
Bayesian Results for the Inverse Gaussian Distribution With an Application
,”
Technometrics
,
21
(
2
), pp.
247
251
.
45.
Tsionas
,
E. G.
,
2004
, “
Bayesian Inference for Multivariate Gamma Distributions
,”
Stat. Comput.
,
14
(
3
), pp.
223
233
.
46.
Beek
,
A.
, and
Li
,
M.
,
2016
, “
Tolerance Allocation and Calibration With Limited Emphirical Data
,”
ASME
Paper No. DETC2016-59328.
47.
Ferson
,
S.
, Oberkampf, W. L., and Ginzburg, L.,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
48.
Ferson
,
S.
,
Oberkamp
,
F. W.
, and
Ginzburg
,
L.
,
2009
, “
Validation of Imprecise Probability Models
,”
Int. J. Reliab. Saf.
,
3
(
1
), pp.
3
22
.
49.
Murphy
,
K. P.
,
2007
, “
Conjugate Bayesian Analysis of the Gaussian Distribution
,” University of British Columbia, Vancouver, BC, Canada, accessed Dec. 5, 2017, https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
You do not currently have access to this content.