A multitude of studies in economics, psychology, political and social sciences have demonstrated the wisdom of crowds (WoC) phenomenon, where the collective estimate of a group can be more accurate than estimates of individuals. While WoC is observable in such domains where the participating individuals have experience or familiarity with the question at hand, it remains unclear how effective WoC is for domains that traditionally require deep expertise or sophisticated computational models to estimate objective answers. This work explores how effective WoC is for engineering design problems that are esoteric in nature, that is, problems (1) whose solutions traditionally require expertise and specialized knowledge, (2) where access to experts can be costly or infeasible, and (3) in which previous WoC studies with the general population have been shown to be highly ineffective. The main hypothesis in this work is that in the absence of experts, WoC can be observed in groups that consist of practitioners who are defined to have a base familiarity with the problems in question but not necessarily domain experts. As a way to emulate commonly encountered engineering problem-solving scenarios, this work studies WoC with practitioners that form microcrowds consisting of 5–15 individuals, thereby giving rise to the term the wisdom of microcrowds (WoMC). Our studies on design evaluations show that WoMC produces results whose mean is in the 80th percentile or better across varying crowd sizes, even for problems that are highly nonintuitive in nature.

References

1.
Galton
,
F.
,
1907
, “
The Ballot-Box
,”
Nature
,
75
(
1952
), pp.
509
510
.
2.
Hooker
,
R. H.
,
1907
, “
Mean or Median
,”
Nature
,
75
, pp.
487
488
.
3.
Surowiecki
,
J.
,
2005
,
The Wisdom of Crowds
,
Anchor
,
New York
.
4.
Wah
,
C.
,
2006
,
Crowdsourcing and Its Applications in Computer Vision
,
University of California
,
San Diego, CA
.
5.
Burnap
,
A.
,
Ren
,
Y.
,
Gerth
,
R.
,
Papazoglou
,
G.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2015
, “
When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation
,”
J. Mech. Des.
,
137
(
3
), p.
031101
.
6.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
J. Mech. Des.
,
132
(
2
), p.
021004
.
7.
Yang
,
M. C.
,
2010
, “
Consensus and Single Leader Decision-Making in Teams Using Structured Design Methods
,”
Des. Stud.
,
31
(
4
), pp.
345
362
.
8.
Gurnani
,
A.
, and
Lewis
,
K.
,
2008
, “
Collaborative, Decentralized Engineering Design at the Edge of Rationality
,”
J. Mech. Des.
,
130
(
12
),
121101
.
9.
Takai
,
S.
,
2010
, “
A Game-Theoretic Model of Collaboration in Engineering Design
,”
J. Mech. Des.
,
132
(
5
),
p. 051005
.
10.
Cabrerizo
,
F. J.
,
Ureña
,
R.
,
Pedrycz
,
W.
, and
Herrera-Viedma
,
E.
,
2014
, “
Building Consensus in Group Decision Making With an Allocation of Information Granularity
,”
Fuzzy Sets Syst.
,
255
, pp.
115
127
.
11.
Hong
,
L.
, and
Page
,
S. E.
,
2004
, “
Groups of Diverse Problem Solvers Can Outperform Groups of High-Ability Problem Solvers
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
46
), pp.
16385
16389
.
12.
Lorenz
,
J.
,
Rauhut
,
H.
,
Schweitzer
,
F.
, and
Helbing
,
D.
,
2011
, “
How Social Influence Can Undermine the Wisdom of Crowd Effect
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
22
), pp.
9020
9025
.
13.
Lorenz
,
K.
,
Jones
,
J.
,
Wimpenny
,
D.
, and
Jackson
,
M.
,
2015
, “
A Review of Hybrid Manufacturing
,”
Solid Freeform Fabrication Symposium (SFF)
,
Austin, TX
,
Aug
., pp.
10
12
.
14.
Berinsky
,
A. J.
,
Huber
,
G. A.
, and
Lenz
,
G. S.
,
2012
, “
Evaluating Online Labor Markets for Experimental Research: Amazon.com’s Mechanical Turk
,”
Polit. Anal.
,
20
(
3
), pp.
351
368
.
15.
Kittur
,
A.
,
Chi
,
E. H.
, and
Suh
,
B.
,
2008
, “
Crowdsourcing User Studies With Mechanical Turk
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
, ACM, pp.
453
456
.
16.
Kittur
,
A.
,
Nickerson
,
J. V.
,
Bernstein
,
M.
,
Gerber
,
E.
,
Shaw
,
A.
,
Zimmerman
,
J.
,
Lease
,
M.
, and
Horton
,
J.
,
2013
, “
The Future of Crowd Work
,”
Proceedings of the 2013 Conference on Computer Supported Cooperative Work
, ACM, pp.
1301
1318
.
17.
Rzeszotarski
,
J. M.
, and
Kittur
,
A.
,
2011
, “
Instrumenting the Crowd: Using Implicit Behavioral Measures to Predict Task Performance
,”
Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology
, ACM, pp.
13
22
.
18.
Panchal
,
J. H.
,
Sha
,
Z.
, and
Kannan
,
K. N.
,
2017
, “
Understanding Design Decisions Under Competition Using Games With Information Acquisition and a Behavioral Experiment
,”
J. Mech. Des.
,
139
(
9
),
091402
.
19.
Ball
,
Z.
, and
Lewis
,
K.
,
2018
, “
Observing Network Characteristics in Mass Collaboration Design Projects
,”
Des. Sci.
,
4
, p.
e4
.
20.
Burnap
,
A.
,
Gerth
,
R.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2017
, “
Identifying Experts in the Crowd for Evaluation of Engineering Designs
,”
J. Eng. Des.
,
28
(
5
), pp.
317
337
.
21.
Burnap
,
A.
,
Hartley
,
J.
,
Pan
,
Y.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2015
, “
Balancing Design Freedom and Brand Recognition in the Evolution of Automotive Brand Styling
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
.
22.
Orbay
,
G.
,
Fu
,
L.
, and
Kara
,
L. B.
,
2015
, “
Deciphering the Influence of Product Shape on Consumer Judgments Through Geometric Abstraction
,”
J. Mech. Des.
,
137
(
8
),
081103
.
23.
Ghosh
,
D. D.
,
Olewnik
,
A.
, and
Lewis
,
K. E.
,
2017
, “
An Integrated Framework for Predicting Consumer Choice Through Modeling of Preference and Product Use Data
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
.
24.
Morgan
,
H.
,
Levatti
,
H.
,
Sienz
,
J.
,
Gil
,
A.
, and
Bould
,
D.
,
2014
, “
Ge Jet Engine Bracket Challenge: A Case Study in Sustainable Design
,”
Sustain. Des. Manuf.
Part 1), pp.
95
107
.
25.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of Near and Far?: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
J. Mech. Des.
,
135
(
2
),
021007
.
26.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
J. Mech. Des.
,
136
(
10
),
101102
.
27.
Moreno
,
D. P.
,
Hernandez
,
A. A.
,
Yang
,
M. C.
,
Otto
,
K. N.
,
Hölttä-Otto
,
K.
,
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Linden
,
A.
,
2014
, “
Fundamental Studies in Design-by-Analogy: A Focus on Domain-Knowledge Experts and Applications to Transactional Design Problems
,”
Des. Stud.
,
35
(
3
), pp.
232
272
.
28.
Shah
,
J. J.
,
Kulkarni
,
S. V.
, and
Vargas-Hernandez
,
N.
,
2000
, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
J. Mech. Des.
,
122
(
4
), pp.
377
384
.
29.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
30.
Green
,
M.
,
Seepersad
,
C. C.
, and
Hölttä-Otto
,
K.
,
2014
, “
Crowd-Sourcing the Evaluation of Creativity in Conceptual Design: A Pilot Study
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, pp.
V007T07A016
V007T07A016
.
31.
Gosnell
,
C. A.
, and
Miller
,
S. R.
,
2016
, “
But Is It Creative? Delineating the Impact of Expertise and Concept Ratings on Creative Concept Selection
,”
J. Mech. Des.
,
138
(
2
),
021101
.
32.
Toh
,
C. A.
,
Starkey
,
E. M.
,
Tucker
,
C. S.
, and
Miller
,
S. R.
,
2017
, “
Mining for Creativity: Determining the Creativity of Ideas Through Data Mining Techniques
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, pp.
V007T06A010
V007T06A010
.
33.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
34.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput. Aided Des.
,
30
(
5
), pp.
343
356
.
35.
Nobel-Jørgensen
,
M.
,
Malmgren-Hansen
,
D.
,
Bærentzen
,
J. A.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Improving Topology Optimization Intuition Through Games
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
775
781
.
36.
Whitehill
,
J.
,
Wu
,
T.-F.
,
Bergsma
,
J.
,
Movellan
,
J. R.
, and
Ruvolo
,
P. L.
,
2009
, “
Whose Vote Should Count More: Optimal Integration of Labels From Labelers of Unknown Expertise
,”
Advances in Neural Information Processing Systems
, pp.
2035
2043
.
37.
Bachrach
,
Y.
,
Graepel
,
T.
,
Minka
,
T.
, and
Guiver
,
J.
,
2012
, “
How to Grade a Test Without Knowing the Answers—A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing
,” preprint arXiv:1206.6386.
38.
Welinder
,
P.
,
Branson
,
S.
,
Belongie
,
S. J.
, and
Perona
,
P.
,
2010
, “
The Multidimensional Wisdom of Crowds
,”
NIPS
, Vol.
23
, pp.
2424
2432
.
39.
Lakshminarayanan
,
B.
, and
Teh
,
Y. W.
,
2013
, “
Inferring Ground Truth From Multi-Annotator Ordinal Data: A Probabilistic Approach
,” preprint arXiv:1305.0015.
40.
Wauthier
,
F. L.
, and
Jordan
,
M. I.
,
2011
, “
Bayesian Bias Mitigation for Crowdsourcing
,”
Advances in Neural Information Processing Systems
, pp.
1800
1808
.
41.
Vul
,
E.
, and
Pashler
,
H.
,
2008
, “
Measuring the Crowd Within Probabilistic Representations Within Individuals
,”
Psychol. Sci.
,
19
(
7
), pp.
645
647
.
42.
Kendall
,
M. G.
,
1955
,
Rank Correlation Methods
,
Charles Griffin
,
London
.
43.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
, pp.
85
100
.
44.
Miller
,
S. R.
,
Bailey
,
B. P.
, and
Kirlik
,
A.
,
2014
, “
Exploring the Utility of Bayesian Truth Serum for Assessing Design Knowledge
,”
Hum. Comput. Interact.
,
29
, pp.
487
515
.
45.
Wilson
,
J. O.
,
Rosen
,
D.
,
Nelson
,
B. A.
, and
Yen
,
J.
,
2010
, “
The Effects of Biological Examples in Idea Generation
,”
Des. Stud.
,
31
(
2
), pp.
169
186
.
46.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
,
2013
, “
Design Fixation and Its Mitigation: A Study on the Role of Expertise
,”
J. Mech. Des.
,
135
(
5
),
051008
.
47.
Cicchetti
,
D. V.
,
1994
, “
Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology
,”
Psychol. Assess.
6
(
4
), pp.
284
290
.
You do not currently have access to this content.