Abstract

Topology optimization with moving morphable voids (MMVs) is studied in this paper. B-spline curves are used to represent the boundaries of MMVs in the structure. Kreisselmeier–Steinhauser (KS)-function is also implemented to preserve the smoothness of the structural boundary in case the intersection of the curves happen. In order to study the influence of continuity, we propose pseudo-periodic closed B-splines (PCBSs) to construct curves with an arbitrary degree. The selection of PCBS parameters, especially the degree of B-spline, is studied and discussed. The classic Messerschmitt–Bolkow–Blohm (MBB) case is taken as an example in the numerical experiment. Results show that with the proper choice of B-spline degrees and number of control points, PCBSs have enough flexibility and stability to represent the optimized material distribution. We further reveal the mechanism of the merging process of holes and find that high-order degree PCBS could preserve more separated voids. A support beam design problem of microsatellite is also studied as an example to demonstrate the capability of the proposed method.

References

1.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
3.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
4.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
5.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
6.
Carstensen
,
J. V.
, and
Guest
,
J. K.
,
2018
, “
Projection-Based Two-Phase Minimum and Maximum Length Scale Control
,”
Struct. Multidiscip. Optim.
58
(
5
), pp.
1845
1860
.
7.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
6
), pp.
767
784
.
8.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
9.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
10.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
11.
Luo
,
Z.
,
Tong
,
L.
, and
Kang
,
Z.
,
2009
, “
A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions
,”
Comput. Struct.
,
87
(
7–8
), pp.
425
434
.
12.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
.
13.
Wei
,
P.
,
Wang
,
M. Y.
, and
Xing
,
X.
,
2010
, “
A Study on X-FEM in Continuum Structural Optimization Using a Level Set Model
,”
Comput. Des.
,
42
(
8
), pp.
708
719
.
14.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Jerry Qi
,
H.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des
,
137
(
11
), p.
111402
.
15.
Zhang
,
W. S.
,
Guo
,
X.
,
Wang
,
M. Y.
, and
Wei
,
P.
,
2013
, “
Optimal Topology Design of Continuum Structures With Stress Concentration Alleviation Via Level Set Method
,”
Int. J. Numer. Methods Eng.
,
93
(
9
), pp.
942
959
.
16.
Picelli
,
R.
,
Townsend
,
S.
, and
Kim
,
H. A.
,
2018
, “
Stress and Strain Control Via Level Set Topology Optimization
,”
Struct. Multidiscip. Optim.
58
(
5
), pp.
2037
2051
.
17.
Chen
,
S.
, and
Chen
,
W.
,
2011
, “
A New Level-Set Based Approach to Shape and Topology Optimization Under Geometric Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
1
18
.
18.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2003
, “
Design-Dependent Loads in Topology Optimization
,”
Esaim Control Optim. Calc. Var.
,
9
(
9
), pp.
19
48
.
19.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2006
, “
The Phase-Field Method in Optimal Design
,”
Solid Mech. Its Appl.
137
, pp.
207
215
.
20.
Takezawa
,
A.
,
Nishiwaki
,
S.
, and
Kitamura
,
M.
,
2010
, “
Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis
,”
J. Comput. Phys.
,
229
(
7
), pp.
2697
2718
.
21.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.
22.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization with Connectivity Index Constraints
,”
ASME J. Mech. Des.
140
(
11
), p.
111417
.
23.
Wang
,
Y.
,
Arabnejad Khanoki
,
S.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2018
, “
Hip Implant Design With Three-Dimensional Porous Architecture of Optimized Graded Density
,”
ASME J. Mech. Des.
140
(
11
), p.
111406
.
24.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C. C. L.
,
Cheng
,
L.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
25.
Zhang
,
W.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Lagrangian Description Based Topology Optimization—A Revival of Shape Optimization
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041010
.
26.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
81009
.
27.
Van Miegroet
,
L.
, and
Duysinx
,
P.
,
2007
, “
Stress Concentration Minimization of 2D Filets Using X-FEM and Level Set Description
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
425
438
.
28.
Burla
,
R. K.
, and
Kumar
,
A. V.
,
2008
, “
Implicit Boundary Method for Analysis Using Uniform B-Spline Basis and Structured Grid
,”
Int. J. Numer. Methods Eng.
,
76
(
13
), pp.
1993
2028
.
29.
Dunning
,
P. D.
,
2017
, “
Design Parameterization for Topology Optimization by Intersection of an Implicit Function
,”
Comput. Methods Appl. Mech. Eng.
317
, pp.
993
1011
.
30.
Deng
,
J.
, and
Chen
,
W.
,
2016
, “
Design for Structural Flexibility Using Connected Morphable Components Based Topology Optimization
,”
Sci. China Technol. Sci.
,
59
(
6
), pp.
839
851
.
31.
Bujny
,
M.
,
Aulig
,
N.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2016
, “
Evolutionary Level Set Method for Crashworthiness Topology Optimization
,”
VII European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete Island, Greece
,
June 5–10
.
32.
Lei
,
X.
,
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2018
, “
Machine Learning Driven Real Time Topology Optimization Under Moving Morphable Component (MMC)-Based Framework
,”
ASME J. Appl. Mech.
86
(
1
), p.
011004
.
33.
Liu
,
C.
,
Zhu
,
Y.
,
Sun
,
Z.
,
Li
,
D.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2018
, “
An Efficient Moving Morphable Component (MMC)-Based Approach for Multi-Resolution Topology Optimization
,”
Struct. Multidiscip. Optim.
58
(
6
), pp.
2455
2479
.
34.
Hoang
,
V.-N.
, and
Jang
,
G.-W.
,
2017
, “
Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
153
173
.
35.
Zhu
,
B.
,
Chen
,
Q.
,
Wang
,
R.
, and
Zhang
,
X.
,
2018
, “
Structural Topology Optimization Using a Moving Morphable Component-Based Method Considering Geometrical Nonlinearity
,”
ASME J. Mech. Des.
140
(
8
), p.
081403
.
36.
Zhang
,
W.
,
Liu
,
Y.
,
Du
,
Z.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Component (MMC)-Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints
,”
ASME J. Mech. Des.
140
(
11
), p.
111404
.
37.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization with Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
38.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1
18
.
39.
Takalloozadeh
,
M.
, and
Yoon
,
G. H.
,
2017
, “
Implementation of Topological Derivative in the Moving Morphable Components Approach
,”
Finite Elem. Anal. Des.
,
134
, pp.
16
26
.
40.
Yi
,
G.
, and
Kim
,
N. H.
,
2016
, “
Identifying Boundaries of Topology Optimization Results Using Basic Parametric Features
,”
Struct. Multidiscip. Optim.
55
(
5
), pp.
1641
1654
.
41.
Wang
,
Y.
,
Wang
,
Z.-P.
,
Xia
,
Z.
, and
Poh
,
L. H.
,
2018
, “
Structural Design Optimization Using Isogeometric Analysis: A Comprehensive Review
,”
Comput. Model. Eng. Sci.
109
(
3
), pp.
455
507
.
42.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
.
43.
Wang
,
Y.
, and
Benson
,
D. J.
,
2016
, “
Isogeometric Analysis for Parameterized LSM-Based Structural Topology Optimization
,”
Comput. Mech.
,
57
(
1
), pp.
19
35
.
44.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
.
45.
Bandara
,
K.
,
Rüberg
,
T.
, and
Cirak
,
F.
,
2016
, “
Shape Optimisation with Multiresolution Subdivision Surfaces and Immersed Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
510
539
.
46.
Allaire
,
G.
,
De Gournay
,
F.
,
Jouve
,
F.
, and
Toader
,
A.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity via a Level Set Method
,”
Control Cybern.
,
34
(
1
), p.
59
.
47.
Kang
,
Z.
, and
Wang
,
Y.
,
2013
, “
Integrated Topology Optimization with Embedded Movable Holes Based on Combined Description by Material Density and Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
255
, pp.
1
13
.
48.
Cervera
,
E.
, and
Trevelyan
,
J.
,
2005
, “
Evolutionary Structural Optimisation Based on Boundary Representation of NURBS. Part I: 2D Algorithms
,”
Comput. Struct.
,
83
(
23–24
), pp.
1917
1929
.
49.
Lee
,
S.
,
Kwak
,
B. M.
, and
Kim
,
I. Y.
,
2009
, “
Smooth Boundary Topology Optimization Using B-Spline and Hole Generation
,”
Int. J. CAD/CAM.
7
(
1
).
50.
Dunning
,
P. D.
, and
Alicia Kim
,
H.
,
2013
, “
A New Hole Insertion Method for Level Set Based Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
93
(
1
), pp.
118
134
.
51.
Zhang
,
W.
,
Zhou
,
Y.
, and
Zhu
,
J.
,
2017
, “
A Comprehensive Study of Feature Definitions with Solids and Voids for Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
289
313
.
52.
Weiss
,
D.
,
2010
, “
Feature-Based Spline Optimization in CAD
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
619
631
.
53.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
Jan
), pp.
1
10
.
54.
Zhang
,
W.
,
Zhao
,
L.
,
Gao
,
T.
, and
Cai
,
S.
,
2017
, “
Topology Optimization with Closed B-Splines and Boolean Operations
,”
Comput. Methods Appl. Mech. Eng.
315
.
55.
Xue
,
R.
,
Li
,
R.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2017
, “
Kirigami Pattern Design of Mechanically Driven Formation of Complex 3D Structures Through Topology Optimization
,”
Extrem. Mech. Lett.
15
, pp.
139
144
.
56.
Piegl
,
L.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer
,
Berlin.
57.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
58.
Qian
,
X.
,
2013
, “
Topology Optimization in B-Spline Space
,”
Comput. Methods Appl. Mech. Eng.
,
265
, pp.
15
35
.
59.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2015
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1
18
.
60.
Pingen
,
G.
,
Waidmann
,
M.
,
Evgrafov
,
A.
, and
Maute
,
K.
,
2010
, “
A Parametric Level-Set Approach for Topology Optimization of Flow Domains
,”
Struct. Multidiscip. Optim.
,
41
(
1
), pp.
117
131
.
61.
Li
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2014
, “
Topology Optimization of Structures Under Multiple Loading Cases with a New Compliance–Volume Product
,”
Eng. Optim.
,
46
(
6
), pp.
725
744
.
62.
Shapiro
,
V.
,
1991
,
Theory of R-Functions and Applications: A Primer
,
Cornell University
,
Ithaca, NY
.
63.
Xie
,
X.
,
Wang
,
S.
,
Xu
,
M.
, and
Wang
,
Y.
,
2018
, “
A New Isogeometric Topology Optimization Using Moving Morphable Components Based on R-Functions and Collocation Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
61
90
.
64.
Kreissl
,
S.
,
Pingen
,
G.
, and
Maute
,
K.
,
2011
, “
An Explicit Level Set Approach for Generalized Shape Optimization of Fluids With the Lattice Boltzmann Method
,”
Int. J. Numer. Methods Fluids
,
65
(
5
), pp.
496
519
.
65.
Behrou
,
R.
, and
Guest
,
J. K.
,
2017
, “
Topology Optimization for Transient Response of Structures Subjected to Dynamic Loads
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics
,
Denver, CO
,
June 5–9
.
66.
Li
,
H.
,
Li
,
P.
,
Gao
,
L.
,
Zhang
,
L.
, and
Wu
,
T.
,
2015
, “
A Level Set Method for Topological Shape Optimization of 3D Structures With Extrusion Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
615
635
.
67.
Gao
,
H. H.
,
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Zhou
,
Y.
,
2015
, “
An Improved Adaptive Constraint Aggregation for Integrated Layout and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
289
, pp.
387
408
.
68.
Svanberg
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
Siam J. Optim.
,
12
(
2
), pp.
555
573
.
69.
Hou
,
J.
,
Zhu
,
J.-H.
, and
Li
,
Q.
,
2016
, “
On the Topology Optimization of Elastic Supporting Structures Under Thermomechanical Loads
,”
Int. J. Aerosp. Eng.
70.
Vargas
,
D. C.
,
Rodríguez
,
E. J.
,
Flickner
,
M.
, and
Sanz
,
J. L. C.
,
1996
, “
Splines and Spline Fitting Revisited
,”
Image Technology: Advances in Image Processing, Multimedia and Machine Vision
,
J. L. C.
Sanz
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
405
437
.
71.
Reinsch
,
C. H.
,
1967
, “
Smoothing by Spline Functions. I
,”
Numer. Math.
,
10
(
3
), pp.
177
183
.
72.
Höllig
,
K.
, and
Hörner
,
J.
,
2013
,
Approximation and Modeling With B-Splines
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
73.
Späth
,
H.
, and
Meier
,
J.
,
1988
, “
Flexible Smoothing with Periodic Cubic Splines and Fitting With Closed Curves
,”
Computing.
,
40
(
4
), pp.
293
300
.
You do not currently have access to this content.