Abstract

The concept of a statically balanced mechanism with a single rotational degree-of-freedom is presented. The proposed device achieves static balancing by combining positive stiffness elements and negative stiffness elements within an annular domain. Two designs are discussed. The first is composed of an Archimedean spiral and two pinned-pinned pre-buckled beams. The overall mechanism is modeled via an analytical approach and the element dimensions are optimized. The optimal configuration is then tested through finite element analysis (FEA). A second approach replaces the spiral beam with elastic custom-shaped spline beams. A FEA optimization is performed to determine the shape and size of such spline beams. The behavior of the negators is used as reference for the optimization so as to achieve a complete balancing. A physical prototype of each configuration is machined and tested. The comparison between predicted and acquired data confirmed the efficacy of the design methods.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-torque Outputs
,”
Mech. Mach. Theory.
,
62
, pp.
166
181
. 10.1016/j.mechmachtheory.2012.12.002
3.
Lan
,
C.-C.
, and
Wang
,
J.-Y.
,
2011
, “
Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
, pp.
386
391
.
4.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
. 10.1115/1.4034885
5.
Reddy
,
B. P.
, and
Zhou
,
H.
,
2017
, “
Synthesizing Bidirectional Constant Torque Compliant Mechanisms
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
Tampa, FL
, p.
V04AT05A006
.
6.
Gandhi
,
I.
, and
Zhou
,
H.
,
2019
, “
Synthesizing Constant Torque Compliant Mechanisms Using Precompressed Beams
,”
ASME J. Mech. Des.
,
141
(
1
), p.
014501
. 10.1115/1.4041330
7.
Wang
,
P.
,
Yang
,
S.
, and
Xu
,
Q.
,
2018
, “
Design and Optimization of a New Compliant Rotary Positioning Stage With Constant Output Torque
,”
Inter. J. Precision Engin. Manufact.
,
19
(
12
), pp.
1843
1850
. 10.1007/s12541-018-0213-x
8.
Brown
,
A.
,
1981
,
Engineering Design Guides (Mechanical Springs) 42
,
Oxford University Press
,
Oxford
.
9.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
10.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design and Testing of a Flexure-Based Constant-force Stage for Biological Cell Micromanipulation
,”
Trans. Autom. Sci. Eng
,
15
(
3
), pp.
1114
1126
. 10.1109/TASE.2017.2733553
11.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
. 10.1115/1.4027285
12.
Tolman
,
K. A.
,
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Compliant Constant-Force Linear-motion Mechanism
,”
Mech. Mach. Theory.
,
106
, pp.
68
79
. 10.1016/j.mechmachtheory.2016.08.009
13.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
. 10.1115/1.4005865
14.
López-Martínez
,
J.
,
García-Vallejo
,
D.
,
Arrabal-Campos
,
F. M.
, and
Garcia-Manrique
,
J. M.
,
2018
, “
Design of Three New CAM-Based Constant-Force Mechanisms
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082302
. 10.1115/1.4040174
15.
Berselli
,
G.
,
Mammano
,
G. S.
, and
Dragoni
,
E.
,
2014
, “
Design of a Dielectric Elastomer Cylindrical Actuator With Quasi-Constant Available Thrust: Modeling Procedure and Experimental Validation
,”
ASME J. Mech. Des.
,
136
(
12
), p.
125001
. 10.1115/1.4028277
16.
Pedersen
,
C.
,
Fleck
,
N.
, and
Ananthasuresh
,
G.
,
2006
, “
Design of a Compliant Mechanism to Modify An Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
. 10.1115/1.2218883
17.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-force Mechanisms: A Survey
,”
Mech. Mach. Theory.
,
119
, pp.
1
21
. 10.1016/j.mechmachtheory.2017.08.017
18.
McGuire
,
J. R.
,
1996
, “
Analysis and Design of Constant-Torque Springs Used in Aerospace Applications
,”
PhD dissertation
,
The University of Texas at Austin
,
Austin, TX
.
19.
Arakelian
,
V.
, and
Ghazaryan
,
S.
,
2008
, “
Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices
,”
Mech. Mach. Theory.
,
43
(
5
), pp.
565
575
. 10.1016/j.mechmachtheory.2007.05.002
20.
Chew
,
D. X.
,
Wood
,
K. L.
, and
Tan
,
U. -X.
,
2019
, “
Design of a Passive Self-Regulating Gravity Compensator for Variable Payloads
,”
ASME J. Mech. Des.
,
141
(
10
), p.
102302
. 10.1115/1.4043582
21.
Wu
,
Y.-S.
, and
Lan
,
C.-C.
,
2014
, “
Linear Variable-stiffness Mechanisms Based on Preloaded Curved Beams
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122302
. 10.1115/1.4028705
22.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2014
, “
Elastic Compensation of Linear Shape Memory Alloy Actuators Using Compliant Mechanisms
,”
J. Int. Material Sys. Struct.
,
25
(
9
), pp.
1124
1138
. 10.1177/1045389X13488253
23.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
. 10.1115/1.4035084
24.
Hao
,
G.
, and
Mullins
,
J.
,
2016
, “
On the Comprehensive Static Characteristic Analysis of a Translational Bistable Mechanism
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
20
), pp.
3803
3817
. 10.1177/0954406215616418
25.
Morsch
,
F. M.
, and
Herder
,
J. L.
,
2010
, “
Design of a Generic Zero Stiffness Compliant Joint
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Ph.D. thesis
,
Delft University of Technology
, pp.
427
435
.
26.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems. Theory, Conception and Design of Statically
,” Vol.
2
.
27.
Sangamesh
,
D.
,
2012
, “
Static balancing of rigid-body linkages and compliant mechanisms
,”
Indian Institute of Science
Bangalore
.
28.
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2015
, “
Non-Dimensional Approach for Static Balancing of Rotational Flexures
,”
Mech. Mach. Theory.
,
84
, pp.
90
98
. 10.1016/j.mechmachtheory.2014.10.006
29.
Radaelli
,
G.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2011
, “
An Energy Approach to Static Balancing of Systems With Torsion Stiffness
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091006
. 10.1115/1.4004704
30.
Stapel
,
A.
, and
Herder
,
J. L.
,
2004
, “
Feasibility Study of a Fully Compliant Statically Balanced Laparoscopic Grasper
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Salt Lake City, UT
, pp.
635
643
.
31.
Merriam
,
E. G.
,
Tolman
,
K. A.
, and
Howell
,
L. L.
,
2016
, “
Integration of Advanced Stiffness-Reduction Techniques Demonstrated in a 3D-printable Joint
,”
Mech. Mach. Theory.
,
105
, pp.
260
271
. 10.1016/j.mechmachtheory.2016.07.009
32.
Zhao
,
H.
,
Zhao
,
C.
,
Ren
,
S.
, and
Bi
,
S.
,
2019
, “
Analysis and Evaluation of a Near-Zero Stiffness Rotational Flexural Pivot
,”
Mech. Mach. Theory.
,
135
, pp.
115
129
. 10.1016/j.mechmachtheory.2019.02.003
33.
Berselli
,
G.
,
Guerra
,
A.
,
Vassura
,
G.
, and
Andrisano
,
A. O.
,
2014
, “
An Engineering Method for Comparing Selectively Compliant Joints in Robotic Structures
,”
Trans. Mechatron.
,
19
(
6
), pp.
1882
1895
. 10.1109/TMECH.2014.2315508
34.
Hongzhe
,
Z.
, and
Shusheng
,
B.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-spring Pivot
,”
Mech. Mach. Theory.
,
45
(
10
), pp.
1434
1448
. 10.1016/j.mechmachtheory.2010.05.004
35.
Bilancia
,
P.
,
Berselli
,
G.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
On the Modeling of a Contact-aided Cross-Axis Flexural Pivot
,”
Mech. Mach. Theory.
,
143
, p.
103618
. 10.1016/j.mechmachtheory.2019.103618
36.
Howell
,
L. L.
,
Magleby
,
S. P.
,
Olsen
,
B. M.
, and
Wiley
,
J.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley Online Library
,
Hoboken, NJ
.
37.
Rubbert
,
L.
,
Caro
,
S.
,
Gangloff
,
J.
, and
Renaud
,
P.
,
2014
, “
Using Singularities of Parallel Manipulators to Enhance the Rigid-Body Replacement Design Method of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051010
. 10.1115/1.4026949
38.
Melchiorri
,
C.
,
Palli
,
G.
,
Berselli
,
G.
, and
Vassura
,
G.
,
2013
, “
Development of the Ub Hand Iv: Overview of Design Solutions and Enabling Technologies
,”
Robot. Autom. Mag.
,
20
(
3
), pp.
72
81
. 10.1109/MRA.2012.2225471
39.
Herder
,
J. L.
,
1998
, “
Design of Spring Force Compensation Systems
,”
Mech. Mach. Theory.
,
33
(
1–2
), pp.
151
161
. 10.1016/S0094-114X(97)00027-X
40.
Tolou
,
N.
,
Smit
,
G.
,
Nikooyan
,
A. A.
,
Plettenburg
,
D. H.
, and
Herder
,
J. L.
,
2012
, “
Stiffness Compensation Mechanism for Body Powered Hand Prostheses With Cosmetic Covering
,”
ASME J. Med. Devices.
,
6
(
1
), p.
011004
. 10.1115/1.4005781
41.
Knox
,
B. T.
, and
Schmiedeler
,
J. P.
,
2009
, “
A Unidirectional Series-Elastic Actuator Design Using a Spiral Torsion Spring
,”
ASME J. Mech. Des.
,
131
(
12
), p.
125001
. 10.1115/1.4000252
42.
Scarcia
,
U.
,
Berselli
,
G.
,
Melchiorri
,
C.
,
Ghinelli
,
M.
, and
Palli
,
G.
,
2016
, “
Optimal Design of 3D Printed Spiral Torsion Springs
,”
ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS)
,
Stowe, VT
, p.
V002T03A020
.
43.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
. 10.1115/1.2936928
44.
Bilancia
,
P.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2019
, “
A CAD/CAE Integration Framework for Analyzing and Designing Spatial Compliant Mechanisms Via Pseudo-Rigid-Body Methods
,”
Robot. Comput. Integr. Manufact.
,
56
, pp.
287
302
. 10.1016/j.rcim.2018.07.015
45.
Muñoz-Guijosa
,
J. M.
,
Caballero
,
D. F.
,
Sanz
,
J. L. M.
, and
Echávarri
,
J.
,
2012
, “
Generalized Spiral Torsion Spring Model
,”
Mech. Mach. Theory.
,
51
, pp.
110
130
. 10.1016/j.mechmachtheory.2011.12.007
46.
Furnémont
,
R.
,
Mathijssen
,
G.
,
Van Der Hoeven
,
T.
,
Brackx
,
B.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2015
, “
Torsion MACCEPA: A Novel Compact Compliant Actuator Designed Around the Drive Axis
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
, pp.
232
237
.
47.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
Courier Corporation
,
New York
.
48.
ANSYS
,
2016
,
ANSYS Mechanical User’s Guide
.
ANSYS Inc
,
Canonsburg, Pennsylvania
.
49.
Cavazzuti
,
M.
,
2012
,
Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics
,
Springer Science & Business Media
,
Berlin
.
50.
Bilancia
,
P.
,
Berselli
,
G.
,
Scarcia
,
U.
, and
Palli
,
G.
,
2018
, “
Design of a Beam-Based Variable Stiffness Actuator Via Shape Optimization in a CAD/CAE Environment
,”
ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS)
,
San Antonio, TX
.
51.
Cheng
,
Z.
,
Foong
,
S.
,
Sun
,
D.
, and
Tan
,
U.-X.
,
2014
, “
Algorithm for Design of Compliant Mechanisms for Torsional Applications
,”
IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
, Besacon, France, pp.
628
633
.
You do not currently have access to this content.