Abstract

Research in additive manufacturing (AM) has increased the use of AM in many industries, resulting in a commensurate need for a workforce skilled in AM. In order to meet this need, educational institutions have undertaken different initiatives to integrate design for additive manufacturing (DfAM) into the engineering curriculum. However, limited research has explored the impact of these educational interventions in bringing about changes in the technical goodness of students' design outcomes, particularly through the integration of DfAM concepts in an engineering classroom environment. This study explores this gap using an experimental study with 193 participants recruited from a junior-level course on mechanical engineering design. The participants were split into three educational intervention groups: (1) no DfAM, (2) restrictive DfAM, and (3) restrictive and opportunistic (dual) DfAM. The effects of the educational intervention on the participants' use of DfAM were measured through changes in (1) participants' DfAM self-efficacy, (2) technical goodness of their AM design outcomes, and (3) participants' use of DfAM-related concepts when describing and evaluating their AM designs. The results showed that while all three educational interventions result in similar changes in the participants' opportunistic DfAM self-efficacy, participants who receive only restrictive DfAM inputs show the greatest increase in their restrictive DfAM self-efficacy. Further, we see that despite these differences, all three groups show a similar decrease in the technical goodness of their AM designs, after attending the lectures. A content analysis of the participants' design descriptions and evaluations revealed a simplification of their design geometries, which provides a possible explanation for the decrease in their technical goodness, despite the encouragement to utilize the design freedom of AM to improve functionality or optimize the weight of the structure. These results emphasize the need for more in-depth DfAM education to encourage the use of both opportunistic and restrictive DfAM during student design challenges. The results also highlight the possible influence of how the design problem is stated on the use of DfAM in solving it.

References

1.
Campbell
,
I.
,
Bourell
,
D.
, and
Gibson
,
I.
,
2012
, “
Additive Manufacturing: Rapid Prototyping Comes of Age
,”
Rapid Prototyp. J.
,
18
(
4
), pp.
255
258
. 10.1108/13552541211231563
2.
Crawford
,
R. H.
, and
Beaman
,
J. J.
,
1999
, “
Solid Freeform Fabrication
,”
IEEE Spectrum
,
36
(
2
), pp.
34
43
. 10.1109/6.744874
3.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
4.
ASTM International
,
2013
, F2792-12a - Standard Terminology for Additive Manufacturing Technologies.
5.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
. 10.1115/1.4031589
6.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comput. Aided Des.
,
26
(
7
), pp.
505
520
. 10.1016/0010-4485(94)90082-5
7.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
. 10.1016/j.addma.2016.08.002
8.
Glass
,
R. L.
,
Hague
,
R.
,
Campbell
,
I.
, and
Dickens
,
P.
,
2003
, “
Implications on Design of Rapid Manufacturing
,”
Proc. Inst. Mech. Eng. C
,
217
(
1
), pp.
25
30
.
9.
Smith
,
H.
, “
3D Printing News and Trends: GE Aviation to Grow Better Fuel Nozzles Using 3D Printing
,” http://3dprintingreviews.blogspot.co.uk/2013/06/ge-aviation-to-grow-better-fuel-nozzles.html, Accessed Aug. 29, 2017.
10.
Leutenecker-Twelsiek
,
B.
,
Ferchow
,
J.
,
Klahn
,
C.
, and
Meboldt
,
M.
,
2017
, “The Experience Transfer Model for New Technologies—Application on Design for Additive Manufacturing,”
Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017
,
M.
Meboldt
, and
C.
Klahn
, eds.,
Springer
,
Cham
.
11.
Renishaw
,
2017
, Digital Evolution of Cranial Surgery.
12.
Cohen
,
D.
,
Sargeant
,
M.
, and
Somers
,
K.
,
2014
, 3-D Printing Takes Shape,
McKinsey Quarterly
,
January
2014.
13.
Manyika
,
J.
,
Chui
,
M.
,
Bughin
,
J.
,
Dobbs
,
R.
,
Bisson
,
P.
, and
Marrs
,
A.
,
2013
, Disruptive technologies: Advances that will transform life, business, and the global economy,
McKinsey Global Institute
.
14.
Columbus
,
L.
,
2014
, “
Demand for 3D Printing Skills Is Accelerating Globally
,” https://www.forbes.com/sites/louiscolumbus/2014/09/15/demand-for-3d-printing-skills-is-accelerating-globally/#4393ca5e522e, Accessed Feb. 2, 2018.
15.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Identifying the Future of Freeform Processing
,”
Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference
,
Austin, TX
, p.
92
.
16.
Thomas-Seale
,
L. E. J.
,
Kirkman-Brown
,
J. C.
,
Attallah
,
M. M.
,
Espino
,
D. M.
, and
Shepherd
,
D. E. T.
,
2018
, “
The Barriers to the Progression of Additive Manufacture: Perspectives From UK Industry
,”
Int. J. Prod. Econ.
,
198
, pp.
104
118
. 10.1016/j.ijpe.2018.02.003
17.
Huang
,
Y.
, and
March
,
M. C. L.
,
2014
, “
Frontiers of Additive Manufacturing Research and Education
,” NSF Workshop Report,
March
, pp.
1
26
.
18.
Williams
,
C. B.
, and
Seepersad
,
C. C.
,
2012
, “
Design for Additive Manufacturing Curriculum: A Problem- and Project-Based Approach
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Jan.
, pp.
81
92
.
19.
Williams
,
C. B.
,
Sturm
,
L.
, and
Wicks
,
A.
,
2015
, “
Advancing Student Learning of Design for Additive Manufacturing Principles Through an Extracurricular Vehicle Design Competition
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
8
.
20.
Moorefield-Lang
,
H. M.
,
2014
, “
Makers in the Library: Case Studies of 3D Printers and Maker Spaces in Library Settings
,”
Library Hi Tech.
,
32
(
4
), pp.
583
593
. 10.1108/LHT-06-2014-0056
21.
Wilczynski
,
V.
,
2015
, “
Academic Makerspaces and Engineering Design
,”
122nd ASEE Annual Conference and Exposition
,
Seattle, Washington
,
June 14–17
, pp.
1
18
.
22.
Barrett
,
T. W.
,
Pizzico
,
M. C.
,
Levy
,
B.
, and
Nagel
,
R. L.
,
2015
, “
A Review of University Maker Spaces a Review of University Maker Spaces Introduction
,”
122nd ASEE Annual Conference and Exposition
,
Seattle, Washington
,
June 14–17, 2017
, pp.
1
16
.
23.
Lamancusa
,
J. S.
,
Jorgensen
,
J. E.
, and
Zayas-Castro
,
J. L.
,
1997
, “
Learning Factory—A New Approach to Integrating Design and Manufacturing Into the Engineering Curriulum
,”
J. Eng. Educ.
,
86
, pp.
103
112
. 10.1002/j.2168-9830.1997.tb00272.x
24.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), pp.
1
9
. 10.1115/1.4037251
25.
Doubrovski
,
E. L.
,
Tsai
,
E. Y.
,
Dikovsky
,
D.
,
Geraedts
,
J. M. P.
,
Herr
,
H.
, and
Oxman
,
N.
,
2015
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
CAD Comput. Aid. Des.
,
60
, pp.
3
13
. 10.1016/j.cad.2014.05.010
26.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
. 10.1115/1.4030991
27.
Salonitis
,
K.
, and
Al Zarban
,
S.
,
2015
, “
Redesign Optimization for Manufacturing Using Additive Layer Techniques
,”
Proc. CIRP
,
36
, pp.
193
198
. 10.1016/j.procir.2015.01.058
28.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Proc. CIRP
,
3
(
1
), pp.
632
637
. 10.1016/j.procir.2012.07.108
29.
Melsa
,
J. L.
,
Rajala
,
S. A.
,
Mohsen
,
J. P.
,
Jamieson
,
L. H.
,
Lohmann
,
J. R.
,
Huband
,
F. L.
,
Kelly
,
W. E.
, and
Mohsen
,
J. P.
,
2009
,
Creating a Culture for Scholarly and Systematic Innovation in Engineering Education
,
American Society for Engineering Education
,
Washington, DC
.
30.
Davison
,
R.
,
2010
,
Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop.
,
National Academies Press
.
31.
Hmelo-Silver
,
C. E.
,
2004
, “
Problem-Based Learning: What and How Do Students Learn?
,”
Educ. Psychol. Rev.
,
16
(
3
), pp.
235
266
. 10.1023/B:EDPR.0000034022.16470.f3
32.
Blumenfeld
,
P. C.
,
Soloway
,
E.
,
Marx
,
R. W.
,
Krajcik
,
J. S.
,
Guzdial
,
M.
, and
Palincsar
,
A.
,
1991
, “
Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning
,”
Educ. Psychol.
,
26
(
3–4
), pp.
369
398
. 10.1207/s15326985ep2603&4_8
33.
Helge Bøhn
,
J.
,
1997
, “
Integrating Rapid Prototyping Into the Engineering Curriculum—A Case Study
,”
Rapid Prototyp. J.
,
3
(
1
), pp.
32
37
. 10.1108/13552549710169264
34.
Meisel
,
N. A.
, and
Williams
,
C. B.
,
2015
, “
Design and Assessment of a 3D Printing Vending Machine
,”
Rapid Prototyp. J.
,
21
(
5
), pp.
471
481
. 10.1108/RPJ-07-2014-0081
35.
Sinha
,
S.
,
Rieger
,
K.
,
Knochel
,
A. D.
, and
Meisel
,
N. A.
,
2017
, “
Design and Preliminary Evaluation of a Deployable Mobile Makerspace for Informal Additive Manufacturing Education
,”
28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
, pp.
2801
2815
.
36.
Booth
,
J. W.
,
Alperovich
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2016
, “
The Design for Additive Manufacturing Worksheet
,”
Volume 7: 28th International Conference on Design Theory and Methodology
,
April
, Paper No. V007T06A041.
37.
Joyce
,
C. K.
,
2009
,
The Blank Page: Effects of Constraint on Creativity
,
University of California
,
Berkley
.
38.
Hailikari
,
T.
,
Katajavuori
,
N.
, and
Lindblom-Ylänne
,
S.
,
2008
, “
The Relevance of Prior Knowledge in Learning and Instructional Design
,”
Am. J. Pharm. Educ.
,
72
(
5
), p.
113
. 10.5688/aj7205113
39.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
,
Aug. 26–29
, pp.
1
14
.
40.
Bransford
,
J. D.
,
Brown
,
A. L.
, and
Cocking
,
R. R.
,
1999
, “Learning and Transfer,”
How People Learn : Brain, Mind, Experience, and School
,
J. D.
Bransford
,
A. L.
Brown
,
R. R.
Cocking
, eds.,
National Academy Press
,
Washington, DC
, pp.
39
66
.
41.
Bandura
,
A.
,
1977
, “
Self-Efficacy: Toward a Unifying Theory of Behavioral Change
,”
Psychol. Rev.
,
84
(
2
), pp.
191
215
. 10.1037/0033-295X.84.2.191
42.
Pajares
,
F.
,
1996
, “
Self-Efficacy Beliefs in Academic Settings
,”
Rev. Educ. Res.
,
66
(
4
), pp.
543
578
. 10.3102/00346543066004543
43.
Carberry
,
A. R.
,
Lee
,
H.-S.
, and
Ohland
,
M. W.
,
2010
, “
Measuring Engineering Design Self-Efficacy
,”
J. Eng. Educ.
,
99
, pp.
71
79
. 10.1002/j.2168-9830.2010.tb01043.x
44.
Quade
,
A.
,
2003
, “
Development and Validation of a Computer Science Self-Efficacy Scale for CS0 Courses and the Group Analysis of CS0 Student Self-Efficacy
,”
Proceedings ITCC 2003, International Conference on Information Technology: Computers and Communications
,
Las Vegas, NV
,
Apr. 28–30
, pp.
60
64
.
45.
Compeau
,
D. R.
, and
Higgins
,
C. A.
,
1995
, “
Computer Self-Efficacy: Development of a Measure and Initial Test
,”
MIS Quarterly
,
19
(
2
), pp.
189
211
. www.jstor.org/stable/249688
46.
Lee
,
C.
,
1982
, “
Self-Efficacy as a Predictor of Performance in Competitive Gymnastics
,”
J. Sport Psychol.
,
4
(
4
), pp.
405
409
. 10.1123/jsp.4.4.405
47.
Barling
,
J.
, and
Abel
,
M.
,
1983
, “
Self-Efficacy Beliefs and Tennis Performance
,”
Cogn. Ther. Res.
,
7
(
3
), pp.
265
272
. 10.1007/BF01205140
48.
Mayer
,
R. E.
,
2002
, “
Rote Versus Meaningful Learning
,”
Theory Into Pract.
,
41
(
4
), pp.
226
232
. 10.1207/s15430421tip4104_4
49.
Mayer
,
R. E.
,
1992
,
Thinking, Problem Solving, Cognition
, 2,
W H Freeman/Times Books/ Henry Holt & Co.
,
New York, NY
.
50.
Mayer
,
R. E.
,
2001
, “Changing Conceptions of Learning: A Century of Progress in the Scientific Study of Education,”
Education Across a Century: The Centennial volume—One Hundredth Yearbook of the National Society for the Study of Education
,
L.
Corno
, ed.,
National Society for the Study of Education
,
Chicago
, pp.
34
75
.
51.
Bloom
,
B. S.
,
1956
,
Taxonomy of Educational Objectives: the Classification of Educational Goals
, Vol.
2
,
Longmans, Green and Co. Ltd
,
London
.
52.
Mayer
,
R. E.
, and
Wittrock
,
M. C.
,
1996
, “Problem-Solving Transfer,”
Handbook of Educational Psychology
,
D. C.
Berliner
,
R. C.
Calfee
, eds.,
Routledge
,
New York and London
, pp.
47
62
.
53.
Detterman
,
D. K.
, and
Sternberg
,
R. J.
,
1993
,
Transfer on Trial: Intelligence, Cognition, and Instruction
,
Ablex Publishing
,
Westport, CT
.
54.
McKeough
,
A.
,
Lupart
,
J. L.
, and
Marini
,
A.
,
2013
,
Teaching for Transfer: Fostering Generalization in Learning
,
Routledge
,
Hillsdale, NJ
.
55.
Mayer
,
R. E.
,
1995
, “Teaching and Testing for Problem Solving,”
International Encyclopedia of Teaching and Teacher Education
, 2,
A. W
Lorin
, ed.,
Elsevier Science Inc.
,
Tarrytown, NY
, pp.
4728
4731
.
56.
Haskell
,
R. E.
,
2000
,
Transfer of Learning: Cognition and Instruction
,
Elsevier
,
New York
.
57.
Mccomb
,
C.
,
Berdanier
,
C.
, and
Menold
,
J.
,
2003
, “
Design Practica as Authentic Assessments in First-Year Engineering Design Courses
,”
2018 FYEE Conference
,
Glassboro, NJ
,
July 24–26
.
58.
Multon
,
K. D.
,
Brown
,
S. D.
, and
Lent
,
R. W.
,
1991
, “
Relation of Self-Efficacy Beliefs to Academic Outcomes: A Meta-Analytic Investigation
,”
J. Counsel. Psychol.
,
38
(
1
), pp.
30
38
. 10.1037/0022-0167.38.1.30
59.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
Teaching Design Freedom: Exploring the Effects of Design for Additive Manufacturing Education on the Cognitive Components of Students’ Creativity
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
,
Aug. 26–29
, pp.
1
14
.
60.
Baer
,
J.
,
2010
, “Is Creativity Domain Specific?”
The Cambridge Handbook of Creativity
,
J. C.
Kaufman
,
R. J.
Sternberg
, eds.,
Cambridge University Press
,
New York, NY
, pp.
321
.
61.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Studies
,
12
(
1
), pp.
3
11
. 10.1016/0142-694X(91)90003-F
62.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
,
Boulder, CO
.
63.
Pallari
,
J. H. P.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
. 10.1109/TBME.2010.2044178
64.
Tuck
,
C. J.
,
Hague
,
R. J. M.
,
Ruffo
,
M.
,
Ransley
,
M.
, and
Adams
,
P.
,
2008
, “
Rapid Manufacturing Facilitated Customization
,”
Int. J. Comput. Integr. Manuf.
,
21
(
3
), pp.
245
258
. 10.1080/09511920701216238
65.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics
,
31
(
6
), p.
1
. 10.1145/2366145.2366149
66.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
5
(
5
), pp.
686
696
. 10.3722/cadaps.2008.686-696
67.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
1–6
), pp.
585
594
. 10.1080/16864360.2007.10738493
68.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
MacHado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. A
,
368
(
1917
), pp.
1999
2032
. 10.1098/rsta.2010.0010
69.
De Laurentis
,
K. J.
,
Kong
,
F. F.
, and
Mavroidis
,
C.
,
2002
, “
Procedure for Rapid Fabrication of Non-Assembly Mechanisms With Embedded Components
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sep. 29–Oct. 2
, pp.
1
7
.
70.
Kaweesa
,
D. V.
,
Spillane
,
D. R.
, and
Meisel
,
N. A.
,
2017
, “
Investigating the Impact of Functionally Graded Materials on Fatigue Life of Material Jetted Specimens
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 7–9
, pp.
578
592
.
71.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
CAD Comput. Aided Des.
,
65
, pp.
1
10
. 10.1016/j.cad.2015.03.001
72.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2016
, “
Investigation of Part Distortions as a Result of Hybrid Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
23
32
. 10.1016/j.rcim.2015.06.001
73.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
. 10.1016/j.actamat.2014.12.054
74.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
75.
Boschetto
,
A.
, and
Bottini
,
L.
,
2016
, “
Design for Manufacturing of Surfaces to Improve Accuracy in Fused Deposition Modeling
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
103
114
. 10.1016/j.rcim.2015.07.005
76.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2016
, “
Finishing of Fused Deposition Modeling Parts by CNC Machining
,”
Rob. Comput. Integr. Manuf.
,
41
, pp.
92
101
. 10.1016/j.rcim.2016.03.004
77.
Fahad
,
M.
, and
Hopkinson
,
N.
,
2012
, “
A New Benchmarking Part for Evaluating the Accuracy and Repeatability of Additive Manufacturing (AM) Processes
,”
2nd International Conference on Mechanical, Production, and Automobile Engineering
,
Singapore
,
Apr. 28–29
, pp.
234
238
.
78.
Cronbach
,
L. J.
,
1951
, “
Coefficient Alpha and the Internal Structure of Tests
,”
Psychometrika
,
16
(
3
), pp.
297
334
. 10.1007/BF02310555
79.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cropley
,
D. H.
,
Reiter-Palmon
,
R.
, and
Sinnett
,
S.
,
2013
, “
Furious Activity versus Understanding: How Much Expertise Is Needed to Evaluate Creative Work?
,”
Psychol. Aesthet., Creat. Arts
,
7
(
4
), pp.
332
340
.10.1037/a0034809
80.
Amabile
,
T. M.
,
1982
, “
Social Psychology of Creativity. A Consensual Assessment Technique
,”
J. Pers. Soc. Psychol.
,
43
(
4
), pp.
997
1013
. 10.1037/0022-3514.43.5.997
81.
Domino
,
G.
, and
Giuliani
,
I.
,
2005
, “
Creativity in Three Samples of Photographers: A Validation of the Adjective Check List Creativity Scale
,”
Creat. Res. J.
,
10
(
2
), pp.
193
200
. 10.1207/s15326934crj1002&3_7
82.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
. 10.1177/001316446002000104
83.
Bray
,
J. H.
, and
Maxwell
,
S. E.
,
1985
,
Multivariate Analysis of Variance
,
Sage
,
Newbury Park, CA
.
84.
Tukey
,
J. W.
,
1949
, “
Comparing Individual Means in the Analysis of Variance
,”
Biometrics
,
5
(
2
), pp.
99
114
. 10.2307/3001913
85.
Weinfurt
,
K. P.
,
2000
, “Repeated Measures Analysis: ANOVA, MANOVA, and HLM,”
Reading and Understanding MORE Multivariate Statistics
,
L. G.
Grimm
,
P. R.
Yarnold
, eds.,
American Psychological Association
,
Washington, DC
, pp.
317
361
.
86.
Elo
,
S.
, and
Kyngäs
,
H.
,
2008
, “
The Qualitative Content Analysis Process
,”
J. Adv. Nurs.
,
62
(
1
), pp.
107
115
. 10.1111/j.1365-2648.2007.04569.x
87.
Rosenshine
,
B.
,
2012
, Principles of Instruction: Research-Based Strategies That all Teachers Should Know, American Educator.
88.
Durand
,
F.
,
Helms
,
M. E.
,
Tsenn
,
J.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
,
2015
, “
In Search of Effective Design Problems for Design Research
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
You do not currently have access to this content.