Abstract

This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.

References

1.
Qian
,
S.
,
Zi
,
B.
,
Wang
,
D.
, and
Li
,
Y.
,
2019
, “
Development of Modular Cable-Driven Parallel Robotic Systems
,”
IEEE Access
,
7
, pp.
5541
5553
. 10.1109/ACCESS.2018.2889245
2.
Aginaga
,
J.
,
Iriarte
,
X.
,
Plaza
,
A.
, and
Mata
,
V.
,
2018
, “
Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092304
. 10.1115/1.4040168
3.
Chen
,
Q.
,
Zi
,
B.
,
Sun
,
Z.
,
Li
,
Y.
, and
Xu
,
Q.
,
2019
, “
Design and Development of a New Cable-Driven Parallel Robot for Waist Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
). 10.1109/tmech.2019.2917294
4.
Ferravante
,
V.
,
Riva
,
E.
,
Taghavi
,
M.
,
Braghin
,
F.
, and
Bock
,
T.
,
2019
, “
Dynamic Analysis of High Precision Construction Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
135
, pp.
54
64
. 10.1016/j.mechmachtheory.2019.01.023
5.
Tang
,
X.
,
2014
, “
An Overview of the Development for Cable-Driven Parallel Manipulator
,”
Adv. Mech. Eng.
,
6
, p.
823028
.
6.
Lau
,
D.
, and
Oetomo
,
D.
,
2016
, “
Conditions on the Cable-Routing Matrix for Wrench Closure of Multilink Cable-Driven Manipulators
,”
ASME J. Mech. Des.
,
138
(
3
), p.
032303
. 10.1115/1.4032402
7.
Qian
,
S.
,
Zi
,
B.
, and
Ding
,
H.
,
2016
, “
Dynamics and Trajectory Tracking Control of Cooperative Multiple Mobile Cranes
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
89
108
. 10.1007/s11071-015-2313-9
8.
Tang
,
X.
, and
Yao
,
R.
,
2011
, “
Dimensional Design on the Six-Cable Driven Parallel Manipulator of FAST
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111012
. 10.1115/1.4004988
9.
Merlet
,
J.-P.
,
2019
, “
Some Properties of the Irvine Cable Model and Their Use for the Kinematic Analysis of Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
135
, pp.
271
280
. 10.1016/j.mechmachtheory.2019.02.009
10.
Izard
,
J.-B.
,
Dubor
,
A.
,
Hervé
,
P.-E.
,
Cabay
,
E.
,
Culla
,
D.
,
Rodriguez
,
M.
, and
Barrado
,
M.
,
2017
, “
Large-Scale 3D Printing With Cable-Driven Parallel Robots
,”
Constr. Rob.
,
1
(
1–4
), pp.
69
76
. 10.1007/s41693-017-0008-0
11.
Filipovic
,
M.
, and
Djuric
,
A.
,
2016
, “
Cable-Suspended CPR-D Type Parallel Robot
,”
J. Theor. Appl. Mech.
,
54
(
2
), pp.
645
657
. 10.15632/jtam-pl.54.2.645
12.
Zhang
,
Z.
,
Shao
,
Z.
,
Wang
,
L.
, and
Shih
,
A. J.
,
2018
,
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
New York
, pp.
340
352
.
13.
Wang
,
L.
,
Chen
,
L.
,
Shao
,
Z.
,
Li
,
H.
, and
Du
,
L.
, “Modal Parameter Identification of the Support Frame of the High-Speed Pick-and-Place Cable-Driven Parallel Robot,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
IOP Publishing
, p.
042011
. 10.1088/1757-899x/452/4/042011
14.
Li
,
Y.
,
Ma
,
Y.
,
Liu
,
S.
,
Luo
,
Z.
,
Mei
,
J.
,
Huang
,
T.
, and
Chetwynd
,
D.
,
2014
, “
Integrated Design of a 4-DOF High-Speed Pick-and-Place Parallel Robot
,”
CIRP Ann.
,
63
(
1
), pp.
185
188
. 10.1016/j.cirp.2014.03.101
15.
Su
,
T.
,
Cheng
,
L.
,
Wang
,
Y.
,
Liang
,
X.
,
Zheng
,
J.
, and
Zhang
,
H.
,
2018
, “
Time-Optimal Trajectory Planning for Delta Robot Based on Quintic Pythagorean-Hodograph Curves
,”
IEEE Access
,
6
, pp.
28530
28539
. 10.1109/ACCESS.2018.2831663
16.
Kaczor
,
D.
,
Recker
,
T.
,
Tappe
,
S.
, and
Ortmaier
,
T.
,
2018
,
Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter
,
T.
Schüppstuhl
,
K.
Tracht
, and
J.
Franke
, eds.,
Springer
,
New York
, pp.
251
259
.
17.
Barnard
,
C. J.
,
Briot
,
S.
, and
Caro
,
S.
,
2012
, “
Trajectory Generation for High Speed Pick and Place Robots
,”
ASME Engineering Systems Design and Analysis (ESDA)
,
Nantes, France
,
2012/7
.
18.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2017
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
. 10.1109/TRO.2016.2631591
19.
Hwang
,
S. W.
,
Bak
,
J.-H.
,
Yoon
,
J.
,
Park
,
J. H.
, and
Park
,
J.-O.
,
2016
, “
Trajectory Generation to Suppress Oscillations in Under-Constrained Cable-Driven Parallel Robots
,”
J. Mech. Sci. Technol.
,
30
(
12
), pp.
5689
5697
. 10.1007/s12206-016-1139-9
20.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
,
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
New York
, pp.
219
230
.
21.
Trevisani
,
A.
,
2013
,
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
New York
, pp.
23
39
.
22.
Zhang
,
N.
, and
Shang
,
W.
,
2016
, “
Dynamic Trajectory Planning of a 3-DOF Under-Constrained Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
98
, pp.
21
35
. 10.1016/j.mechmachtheory.2015.11.007
23.
Dion-Gauvin
,
P.
, and
Gosselin
,
C.
,
2017
, “
Trajectory Planning for the Static to Dynamic Transition of Point-Mass Cable-Suspended Parallel Mechanisms
,”
Mech. Mach. Theory
,
113
, pp.
158
178
. 10.1016/j.mechmachtheory.2017.03.003
24.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory
,
132
, pp.
193
206
. 10.1016/j.mechmachtheory.2018.10.017
25.
Shao
,
Z.
,
Li
,
T.
,
Tang
,
X.
,
Tang
,
L.
, and
Deng
,
H.
,
2018
, “
Research on the Dynamic Trajectory of Spatial Cable-Suspended Parallel Manipulators With Actuation Redundancy
,”
Mechatronics
,
49
, pp.
26
35
. 10.1016/j.mechatronics.2017.11.001
26.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically Feasible Periodic Trajectories for Generic Spatial Three-Degree-of-Freedom Cable-Suspended Parallel Robots
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031004
. 10.1115/1.4039499
27.
Gosselin
,
C.
,
2013
,
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
New York
, pp.
3
22
.
28.
Jiang
,
X.
, and
Gosselin
,
C.
,
2016
, “
Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1550
1557
. 10.1109/TRO.2016.2597315
29.
Idá
,
E.
,
Berti
,
A.
,
Bruckmann
,
T.
, and
Carricato
,
M.
,
2018
,
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
New York
, pp.
207
218
.
30.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2018
, “
Dynamic Trajectory Planning for a Spatial 3-DOF Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
122
, pp.
177
196
. 10.1016/j.mechmachtheory.2017.12.023
31.
Barbazza
,
L.
,
Oscari
,
F.
,
Minto
,
S.
, and
Rosati
,
G.
,
2017
, “
Trajectory Planning of a Suspended Cable Driven Parallel Robot With Reconfigurable End Effector
,”
Rob. Comput. Integr. Manuf.
,
48
, pp.
1
11
. 10.1016/j.rcim.2017.02.001
32.
Huang
,
J.
,
Hu
,
P.
,
Wu
,
K.
, and
Zeng
,
M.
,
2018
, “
Optimal Time-Jerk Trajectory Planning for Industrial Robots
,”
Mech. Mach. Theory
,
121
, pp.
530
544
. 10.1016/j.mechmachtheory.2017.11.006
33.
Kucuk
,
S.
,
2017
, “
Optimal Trajectory Generation Algorithm for Serial and Parallel Manipulators
,”
Rob. Comput. Integr. Manuf.
,
48
, pp.
219
232
. 10.1016/j.rcim.2017.04.006
34.
Jahanpour
,
J.
,
Motallebi
,
M.
, and
Porghoveh
,
M.
,
2016
, “
A Novel Trajectory Planning Scheme for Parallel Machining Robots Enhanced With NURBS Curves
,”
J. Intell. Rob. Syst.
,
82
(
2
), pp.
257
275
. 10.1007/s10846-015-0239-6
35.
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2007
, “
A New Method for Smooth Trajectory Planning of Robot Manipulators
,”
Mech. Mach. Theory
,
42
(
4
), pp.
455
471
. 10.1016/j.mechmachtheory.2006.04.002
36.
Li
,
Y.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2018
, “
An Approach for Smooth Trajectory Planning of High-Speed Pick-and-Place Parallel Robots Using Quintic B-Splines
,”
Mech. Mach. Theory
,
126
, pp.
479
490
. 10.1016/j.mechmachtheory.2018.04.026
37.
Piegl
,
L.
, and
Tiller
,
W.
,
2012
,
The NURBS Book
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.