Abstract

The multi-fidelity surrogate (MFS) model is designed to make use of a small amount of expensive but accurate high-fidelity (HF) information and a lot of inaccurate but cheap low-fidelity (LF) information. In this paper, a canonical correlation analysis (CCA)-based MFS model in which the least squares (LS) method is used to determine optimal parameters, named CCA-LS-MFS, is proposed. The CCA-LS-MFS model consists of three stages. The first stage is to construct two transition matrices of HF and LF samples using the CCA method. Then, the discrepancy function between HF and LF models is constructed. In the third stage, parameters are determined by using the LS method. The correlation between HF and LF models, the cost ratio of HF to LF models, and the combination of HF and LF samples are explored. It is observed that the increase of the correlation between HF and LF models can highly improve the performance of the CCA-LS-MFS model. CCA-LS-MFS is capable of providing more robust performance than the other two baseline MFS models, especially when the HF and LF models are highly or weakly correlated, and is promising for being applied into the engineering problems with unclear correlation between HF and LF models. In addition, it has been found that in case of given total budget and HF information, the cost ratio of HF to LF models plays an important role in prediction performance, which requires more research in the future work.

References

References
1.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
2.
Myers
,
R. H.
,
2012
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
, 2nd ed.,
John Wiley & Sons, Ltd
.,
Hoboken, NJ
.
3.
Gutmann
,
H. M.
,
2001
, “
A Radial Basis Function Method for Global Optimization
,”
J. Global Optim.
,
19
(
3
), pp.
201
227
. 10.1023/A:1011255519438
4.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
. 10.2113/gsecongeo.58.8.1246
5.
Smola
,
A.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
, pp.
199
222
.
6.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscipl. Optim.
,
42
(
6
), pp.
879
896
. 10.1007/s00158-010-0520-z
7.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Meng
,
J.
, and
Yang
,
S.
,
2016
, “
Optimal Weighted Pointwise Ensemble of Radial Basis Functions With Different Basis Functions
,”
AIAA J.
,
54
(
10
), pp.
1
17
. 10.2514/1.j054664
8.
Song
,
X.
,
Lv
,
L.
,
Li
,
J.
,
Sun
,
W.
, and
Zhang
,
J.
,
2018
, “
An Advanced and Robust Ensemble Surrogate Model: Extended Adaptive Hybrid Functions
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041402
. 10.1115/1.4039128
9.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
. 10.1023/A:1012771025575
10.
Lv
,
L.
,
Shi
,
M.
,
Song
,
X.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Fast-Converging Ensemble Infilling Approach Balancing Global Exploration and Local Exploitation: The Go-Inspired Hybrid Infilling Strategy
,”
ASME J. Mech. Des.
,
142
(
2
), p.
024132
. 10.1115/1.4044112
11.
Viana
,
F. A. C.
,
Simpson
,
T. W.
,
Balabanov
,
V.
, and
Toropov
,
V.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
,”
AIAA J.
,
52
(
4
), pp.
670
690
. 10.2514/1.J052375
12.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2016
,
Review of Multi-Fidelity Models
, https://arxiv.org/abs/1609.07196
13.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
. 10.1093/biomet/87.1.1
14.
Forrester
,
A. I. J.
,
András
,
S.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. London, Ser. A
,
463
(
2088
), pp.
3251
3269
. 10.1098/rspa.2007.1900
15.
Han
,
Z. H.
,
Görtz
,
S.
, and
Zimmermann
,
R.
,
2013
, “
Improving Variable-Fidelity Surrogate Modeling via Gradient-Enhanced Kriging and a Generalized Hybrid Bridge Function
,”
Aerosp. Sci. Technol.
,
25
(
1
), pp.
177
189
. 10.1016/j.ast.2012.01.006
16.
Tyan
,
M.
,
Nguyen
,
N. V.
, and
Lee
,
J. W.
,
2015
, “
Improving Variable-Fidelity Modelling by Exploring Global Design Space and Radial Basis Function Networks for Aerofoil Design
,”
Eng. Optim.
,
47
(
7
), pp.
885
908
. 10.1080/0305215X.2014.941290
17.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and
Shao
,
X.
,
2017
, “
Metamodeling for High Dimensional Design Problems by Multi-Fidelity Simulations
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
151
166
. 10.1007/s00158-017-1655-y
18.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
,
Wei
,
L.
, and
Shao
,
X.
,
2017
, “
Adaptive Radial-Basis-Function-Based Multifidelity Metamodeling for Expensive Black-Box Problems
,”
AIAA J.
,
55
(
7
), pp.
1
13
. 10.2514/1.j055649
19.
Durantin
,
C.
,
Rouxel
,
J.
,
Désidéri
,
J. A.
, and
Glière
,
A.
,
2017
, “
Multifidelity Surrogate Modeling Based on Radial Basis Functions
,”
Struct. Multidiscipl. Optim.
,
56
(
5
), pp.
1061
1075
. 10.1007/s00158-017-1703-7
20.
Zhou
,
Q.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
,
Cao
,
L.
, and
Wan
,
L.
,
2017
, “
A Variable Fidelity Information Fusion Method Based on Radial Basis Function
,”
Adv. Eng. Inf.
,
32
(
C
), pp.
26
39
. 10.1016/j.aei.2016.12.005
21.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
1
9
.
22.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscipl. Optim.
,
60
, pp.
965
981
. 10.1007/s00158-019-02248-0
23.
Thompson
,
B.
,
2005
,
Canonical Correlation Analysis. Encyclopedia of Statistics in Behavioral Science
,
John Wiley & Sons, Ltd
.
Hoboken, NJ
24.
Toal
,
D. J. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
51
(
6
), pp.
1223
1245
. 10.1007/s00158-014-1209-5
25.
Zong
,
C.
,
Zheng
,
F.
,
Chen
,
D.
,
Dempster
,
W.
, and
Song
,
X.
,
2020
, “
CFD Analysis of the Flow Force Exerted On the Disc of a Direct-Operated Pressure Safety Valve in Energy System
,”
ASME J. Press. Vessel Technol.
,
142
(
1
), p.
011702
. 10.1115/1.4045131
You do not currently have access to this content.