Abstract

Biomimetic practice requires a diverse set of knowledge from both biology and engineering. Several researchers have been supporting the integration of biologists within biomimetic design teams in order to meet those biological requirements and improve the effectiveness of biomimetic processes. However, interdisciplinarity practices create well-known communication challenges. Based on functional representations (like SAPPhIRE or function behavior structure (FBS)), several approaches to model biological information have been investigated in the literature. Nonetheless, actual communication processes within interdisciplinary biomimetic design teams are yet to be studied. Following this research axis, this publication focuses on communication noises and wonders if a shared framework of reference can be defined to improve communication between biologists and engineers? Through the comparison of processes and graphic representations between biology and engineering design, a set of guidelines is defined to structure a shared framework of reference. Within this framework, a new tool referred to as LINKAGE is then proposed to assist interdisciplinary communication during the biomimetic process.

References

1.
Benyus
,
J. M.
,
1997
,
Biomimicry: Innovation Inspired by Nature
,
Quill
,
New York
.
2.
ISO/TC266
,
2015
, “Biomimétique-Terminologie, Concepts et Méthodologie.”
3.
Keshwani
,
S.
,
Lenau
,
T. A.
,
Ahmed-Kristensen
,
S.
, and
Chakrabarti
,
A.
,
2017
, “
Comparing Novelty of Designs From Biological-Inspiration With Those From Brainstorming
,”
J. Eng. Des.
,
28
(
10–12
), pp.
654
680
. 10.1080/09544828.2017.1393504
4.
Ahmed-Kristensen
,
S.
,
Christensen
,
B. T.
, and
Lenau
,
T.
,
2014
, “
Naturally Original: Stimulating Creative Design Through Biological Analogies and Random Images
,”
International Design Conference, DESIGN
,
Dubrovnik
, pp.
427
436
.
5.
Yen
,
J.
,
Helms
,
M. E.
,
Goel
,
A. K.
,
Tovey
,
C.
, and
Weissburg
,
M.
,
2014
, “Adaptive Evolution of Teaching Practices in Biologically Inspired Design,”
Biologically Inspired Design
, 1st ed., Vol.
1
,
A. K.
Goel
,
D. A.
McAdams
, and
R. B.
Stone
, eds.,
Springer-Verlag London
,
London
, pp.
153
199
.
6.
Chirazi
,
J.
,
Wanieck
,
K.
,
Fayemi
,
P. E.
,
Zollfrank
,
C.
, and
Jacobs
,
S.
,
2019
, “
What Do We Learn From Good Practices of Biologically Inspired Design in Innovation?
,”
Appl. Sci.
,
9
(
4
), p.
650
. 10.3390/app9040650
7.
McCardle
,
J.
,
Angus
,
R.
, and
Trott
,
J.
,
2019
, “
Transdisciplinary Design Practices in Education: A Complex Search for Innovation in Nature
,”
International Conference on Engineering and Product Design Education - E&PDE
,
Glasgow, UK
,
Sept. 12–13
.
8.
Wanieck
,
K.
,
Fayemi
,
P. E.
,
Maranzana
,
N.
,
Zollfrank
,
C.
, and
Jacobs
,
S. R.
,
2017
, “
Biomimetics and Its Tools
,”
Bioinspir. Biomimet. Nanobiomater.
,
6
(
2
), pp.
53
66
. 10.1680/jbibn.16.00010
9.
Jacobs
,
S. R.
,
Nichol
,
E. C.
, and
Helms
,
M. E.
,
2014
, “
‘Where Are We Now and Where Are We Going?’ The BioM Innovation Database
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111101
. 10.1115/1.4028171
10.
Bar-Cohen
,
Y.
,
2006
, “
Biomimetics—Using Nature to Inspire Human Innovation
,”
Bioinspir. Biomimet.
,
1
(
1
), pp.
P1
P12
. 10.1088/1748-3182/1/1/P01
11.
Vincent
,
J. F. V.
,
2009
, “
Biomimetics—A Review
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
8
), pp.
919
939
. 10.1243/09544119JEIM561
12.
Fayemi
,
P.-E.
,
Wanieck
,
K.
,
Zollfrank
,
C.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2017
, “
Biomimetics: Process, Tools and Practice
,”
Bioinspir. Biomimet.
,
12
(
1
), p.
11002
. 10.1088/1748-3190/12/1/011002
13.
Lindemann
,
U.
, and
Gramann
,
J.
,
2004
, “
Engineering Design Using Biological Principles
,”
International Design Conference, DESIGN
,
Dubrovnik
, pp.
355
360
.
14.
Lenau
,
T.
,
2009
, “
Biomimetics as a Design Methodology—Possibilities and Challenges
,”
International Conference on Engineering Design, ICED
,
Standford
, pp.
121
132
.
15.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M. E.
,
2014
, “Information-Processing Theories of Biologically Inspired Design,”
Biologically Inspired Design
, 1st ed., Vol.
1
,
A. K.
Goel
,
D. A.
McAdams
, and
R. B.
Stone
, eds.,
Springer Verlag London
,
London
, pp.
127
152
.
16.
Weidner
,
B. V.
,
Nagel
,
J.
, and
Weber
,
H. J.
,
2018
, “
Facilitation Method for the Translation of Biological Systems to Technical Design Solutions
,”
Int. J. Des. Creat. Innov.
,
6
(
3–4
), pp.
211
234
. 10.1080/21650349.2018.1428689
17.
Graeff
,
E.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2019
, “
Engineers’ and Biologists’ Roles During Biomimetic Design Processes, Towards a Methodological Symbiosis
,”
International Conference on Engineering Design – ICED
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
319
328
.
18.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A. K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
. 10.1098/rsif.2006.0127
19.
Ohno
,
T.
,
1978
,
Toyota Production System: Beyond Large-Scale Production
,
Productivity Press
,
Cambridge, MA
.
20.
Hoagland
,
M. B.
, and
Dodson
,
B.
,
1995
,
The Way Life Works
,
Crown
,
New York
.
21.
Vattam
,
S.
, and
Goel
,
A.
,
2013
, “
Seeking Bioinspiration Online: A Descriptive Account
,”
International Conference on Engineering Design – ICED
,
Seoul, South Korea
,
Aug. 19–22
, pp.
347
356
.
22.
Kruiper
,
R.
,
Vincent
,
J. F. V.
,
Abraham
,
E.
,
Soar
,
R.
,
Konstas
,
I.
,
Chen-Burger
,
J.
, and
Desmulliez
,
M.
,
2018
, “
Towards a Design Process for Computer-Aided Biomimetics
,”
Biomimetics
,
3
(
3
), p.
14
. 10.3390/biomimetics3030014
23.
Fayemi
,
P.-E.
,
Maranzana
,
N.
,
Aoussat
,
A.
,
Chekchak
,
T.
, and
Bersano
,
G.
,
2015
, “
Modeling Biological Systems to Facilitate Their Selection During a Bio-Inspired Design Process
,”
International Conference on Engineering Design – ICED
,
Milan, Italy
,
July 27–30
, pp.
225
234
.
24.
Nagel
,
J. K. S.
,
Nagel
,
R. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Function-Based, Biologically Inspired Concept Generation
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
24
(
4
), pp.
521
535
. 10.1017/S0890060410000375
25.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
,
2010
, “
A Methodology for Supporting ‘Transfer’ in Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
24
(
4
), pp.
483
505
. 10.1017/S0890060410000351
26.
Wynn
,
D.
, and
Clarkson
,
J.
,
2005
, “Models of Designing,”
Design Process Improvement
, 1st ed., Vol.
1
,
J.
Clarkson
, and
C.
Eckert
, eds.,
Springer
,
London
, pp.
34
59
.
27.
Gericke
,
K.
, and
Blessing
,
L.
,
2011
, “
Comparisons of Design Methodologies and Process Models Across Disciplines: A Literature Review
,”
International Conference on Engineering Design – ICED
,
Copenhagen, Denmakrk
,
Aug. 15–18
.
28.
Baumeister
,
D.
,
Tocke
,
R.
,
Dwyer
,
J.
,
Ritter
,
S.
, and
Benyus
,
J.
,
2013
,
Biomimicry Resource Handbook: A Seed Bank of Knowledge and Best Practices
,
CreateSpace Independent Publishing Platform
,
Missoula
.
29.
Freitas Salgueiredo
,
C.
, and
Hatchuel
,
A.
,
2014
, “
Modeling Biologically Inspired Design With the C-K Design Theory
,”
International Design Conference, DESIGN
,
Dubrovnik, Croatia
,
May 19–22
.
30.
Snell-Rood
,
E.
,
2016
, “
Interdisciplinarity: Bring Biologists Into Biomimetics
,”
Nature
,
529
(
7586
), pp.
277
278
. 10.1038/529277a
31.
Graeff
,
E.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2019
, “
Biomimetics, Where Are the Biologists?
,”
J. Eng. Des.
,
30
(
8–9
), pp.
289
310
. 10.1080/09544828.2019.1642462
32.
Helms
,
M. E.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
. 10.1016/j.destud.2009.04.003
33.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
. 10.1002/j.1538-7305.1948.tb01338.x
34.
Berlo
,
D. K.
,
1960
,
The Process of Communication: An Introduction to Theory and Practice
,
Holt, Rinehart and Winston
,
New York
.
35.
Schramm
,
W.
,
1955
,
The Process and Effects of Mass Communication
, 1st ed., Vol.
1
,
University of Illinois Press
,
Urbana, IL
, pp.
1
578
.
36.
Devito
,
J. A.
,
2013
,
Interpersonal Communication Book
, 13th ed., Vol.
1
,
Pearson
,
London
, pp.
1
432
.
37.
Bogatyrev
,
N. R.
, and
Bogatyreva
,
O. A.
,
2015
, “TRIZ-Based Algorithm for Biomimetic Design,”
Procedia Engineering
, Vol.
131
,
D.
Cavallucci
,
G.
Cascini
,
J.
Duflou
,
P.
Livotov
, and
T.
Vaneker
, eds.,
Elsevier
,
New York
, pp.
377
387
.
38.
Nagel
,
J.
,
Schmidt
,
L.
, and
Born
,
W.
,
2018
, “
Establishing Analogy Categories for Bio-Inspired Design
,”
Designs
,
2
(
4
), p.
47
. 10.3390/designs2040047
39.
Chown
,
B.
,
2017
, “
The Design Team as a ‘System of Systems’
,”
2017 IEEE International Systems Engineering Symposium (ISSE)
,
IEEE
, pp.
1
5
.
40.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
. 10.1115/1.4003249
41.
Nagel
,
J. K. S.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
ASME 2010 International Design Engineering Technical Conference & Computers and Information in Engineering Conference
,
Montreal, Canada
,
Aug. 15–18
, pp.
117
128
.
42.
Biomimicry Institute
,
2002
, “AskNature—Innovation Inspired by Nature,” AskNature, pp.
27
29
. https://asknature.org/, Accessed Nov. 23, 2018.
43.
Vincent
,
J. F. V.
,
2014
, “An Ontology of Biomimetics,”
Biologically Inspired Design
, 1st ed., Vol.
1
,
A. K.
Goel
,
D. A.
McAdams
, and
R. B.
Stone
, eds.,
Springer
,
London
, pp.
269
285
.
44.
Vincent
,
J.
, and
Cavallucci
,
D.
,
2018
, “Development of an Ontology of Biomimetics Based on Altshuller’s Matrix,”
Automated Invention for Smart Industries. TFC 2018. IFIP Advances in Information and Communication Technology
, Vol.
541
,
D.
Cavallucci
,
R.
De Guio
, and
S.
Koziołek
, eds.,
Springer
,
Cham
, pp.
14
25
.
45.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M. E.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2010
, “DANE: Fostering Creativity in and through Biologically Inspired Design,”
Design Creativity 2010
, 1, Vol.
1
,
T.
Taura
, and
Y.
Nagai
, eds.,
Springer
,
London
, pp.
115
122
.
46.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
19
(
2
), pp.
113
132
. 10.1017/s0890060405050109
47.
Maturana
,
H. R.
, and
Varela
,
F. J.
,
1980
,
Autopoiesis and Cognition: The Realization of the Living
, Vol.
42
,
Springer Netherlands
,
Dordrecht
.
48.
Miller
,
J. G.
,
1978
,
Living Systems
, 1st ed., Vol.
1
,
McGraw-Hill
,
New York
.
49.
Altshuller
,
G. S.
,
1984
,
Creativity as an Exact Science: The Theory of the Solution of Inventive Problems
,
Gordon and Breach Science Publishers
,
New York
.
50.
Siegel
,
D. S.
,
Waldman
,
D. A.
,
Atwater
,
L. E.
, and
Link
,
A. N.
,
2004
, “
Toward a Model of the Effective Transfer of Scientific Knowledge From Academicians to Practitioners: Qualitative Evidence From the Commercialization of University Technologies
,”
J. Eng. Technol. Manag.
,
21
(
1–2
), pp.
115
142
. 10.1016/j.jengtecman.2003.12.006
51.
Falkenhainer
,
B.
,
Forbus
,
K. D.
, and
Gentner
,
D.
,
1989
, “
The Structure-Mapping Engine: Algorithm and Examples
,”
Artif. Intell.
,
41
(
1
), pp.
1
63
. 10.1016/0004-3702(89)90077-5
52.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cogn. Sci.
,
7
(
2
), pp.
155
170
. 10.1016/S0364-0213(83)80009-3
53.
Helms
,
M. E.
, and
Goel
,
A. K.
,
2014
, “
The Four-Box Method of Problem Specification and Analogy Evaluation in Biologically Inspired Design
,”
Volume 7: 2nd Biennial International Conference on Dynamics for Design; 26th International Conference on Design Theory and Methodology
,
Buffalo, NY
,
Aug. 17–20
, ASME, p. V007T07A005.
54.
Hashemi Farzaneh
,
H.
,
Helms
,
K.
, and
Lindemann
,
U.
,
2015
, “
Visual Representations as a Bridge for Engineers and Biologists in Bio-Inspired Design Collaborations
,”
Proceedings of the International Conference on Engineering Design – ICED
,
Milan, Italy
,
July 27–30
, ICED, pp.
215
224
.
55.
Mathieu
,
J. E.
,
Goodwin
,
G. F.
,
Heffner
,
T. S.
,
Salas
,
E.
, and
Cannon-Bowers
,
J. A.
,
2000
, “
The Influence of Shared Mental Models on Team Process and Performance
,”
Psychol. Assoc. Inc
,
85
(
2
), pp.
273
283
. 10.1037/0021-9010.85.2.273
56.
Choi
,
B.
, and
Pak
,
A.
,
2006
, “
Multidisciplinarity, Inter-Disciplinarity and Trans-Disciplinarity in Health Research
,”
Clin. Investig. Med.
,
29
(
6
), pp.
351
364
.
57.
Alvargonzález
,
D.
,
2011
, “
Multidisciplinarity, Interdisciplinarity, Transdisciplinarity, and the Sciences
,”
Int. Stud. Philos. Sci.
,
25
(
4
), pp.
387
403
. 10.1080/02698595.2011.623366
58.
Lotrecchiano
,
G.
,
2010
, “
Complexity Leadership in Transdisciplinary (TD) Learning Environments: A Knowledge Feedback Loop
,”
Int. J. Transdiscipl. Res.
,
5
(
1
), pp.
29
63
.
59.
Merriam-Webster Dictionary
,
2020
, “Frame of Reference.” https://www.merriam-webster.com/dictionary/frame of reference, Accessed Mar. 20, 2020.
60.
Gentner
,
D.
,
2002
, “Psychology of Mental Models,”
International Encyclopedia of the Social & Behavioral Sciences
,
N. J.
Smelser
, and
P. B.
Baltes
, eds.,
Pergamon Press
,
Oxford
, pp.
9683
9687
.
61.
Bernard
,
C.
, and
Wolf
,
S.
,
1999
,
Experimental Medicine
, 1st ed., Vol.
1
,
Routledge
,
New York
, pp.
23
32
.
62.
Pahl
,
G.
,
Beitz
,
W.
,
Wallace
,
K.
,
Blessing
,
L. T. M.
, and
Bauert
,
F.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer
,
New York
.
63.
De Rosnay
,
J.
,
1977
, “
Le Macroscope. Vers Une Vision Globale (The Macroscope Towards a Comprehensive Vision)
,”
Popul.
,
32
(
6
), p.
1319
. 10.2307/1531419
64.
Fayemi
,
P. E.
,
Maranzana
,
N.
,
Aoussat
,
A.
, and
Bersano
,
G.
,
2014
, “
Bio-Inspired Design Characterisation and Its Links with Problem Solving Tools
,”
International Design Conference, DESIGN
,
Dubrovnik, Croatia
,
July 19–22
, pp.
173
182
.
65.
Simon
,
H. A.
,
1969
,
The Sciences of the Artificial
,
MIT Press
,
Cambridge, MA
.
66.
Bouchard
,
C.
,
Camous
,
R.
, and
Aoussat
,
A.
,
2005
, “
Nature and Role of Intermediate Representations (IR) in the Design Process: Case Studies in Car Design
,”
Int. J. Veh. Des.
,
38
(
1
), pp.
1
25
. 10.1504/IJVD.2005.006602
67.
Wainwright
,
S. A.
,
1988
, “
Form and Function in Organisms
,”
Integr. Comp. Biol.
,
28
(
2
), pp.
671
680
.
68.
Forehand
,
C. J.
,
2009
,
Medical Physiology: Principles for Clinical Medicine
, 3rd ed., Vol.
1
,
R. A.
Rhades
,
D. R.
Bell
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia
, pp.
43
43
.
69.
Sedgwick Minot
,
C.
,
1907
, “
The Problem of Age, Growth, and Death
,”
The Popular Science Monthly
,
71
(
3
), pp.
211
. 10.5962/bhl.title.1058
70.
Haefner
,
J. W.
,
2005
,
Modeling Biological Systems:Principles and Applications
, 2nd ed.,
Springer
,
New York
, pp.
1
475
.
71.
Waterman
,
T. H.
,
1968
, “Systems Theory and Biology—View of a Biologist,”
Systems Theory and Biology
, 1st ed., Vol.
1
,
M. D.
Mesarović
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
1
37
.
72.
Karsenti
,
E.
,
2008
, “
Self-Organization in Cell Biology: A Brief History
,”
Nat. Rev. Mol. Cell Biol.
,
9
(
3
), pp.
255
262
. 10.1038/nrm2357
73.
Jacob
,
F.
,
1993
,
The Logic of Life: A History of Heredity
, New edition,
Princeton University Press
,
Princeton
, pp.
1
362
.
74.
Le Moigne
,
J. L.
,
1994
,
La Théorie Du Système Général : Théorie de La Modélisation (General System Theory: Theory of Modelling)
,
Presses universitaires de France
,
Paris
.
75.
Barthlott
,
W.
,
Schimmel
,
T.
,
Wiersch
,
S.
,
Koch
,
K.
,
Brede
,
M.
,
Barczewski
,
M.
,
Walheim
,
S.
,
Weis
,
A.
,
Kaltenmaier
,
A.
,
Leder
,
A.
, and
Bohn
,
H. F.
,
2010
, “
The Salvinia Paradox: Superhydrophobic Surfaces With Hydrophilic Pins for Air Retention Under Water
,”
Adv. Mater.
,
22
(
21
), pp.
2325
2328
. 10.1002/adma.200904411
You do not currently have access to this content.