Abstract

Industry 4.0, as the fourth industrial revolution, represents significant challenges and numerous innovation opportunities for future product realization. A critical area of Industry 4.0 is the advancement of new design theories, design methods, and design principles to drive and enable the revolution with designers, engineers, teams, and organizations. This paper focuses on the advancement of a design theory and design principles for a growing manufacturing capability for Industry 4.0: additive manufacturing (AM). With high degrees of freedom, the field and use of AM requires design guidance and highly practical knowledge for supporting ideation processes, enabling understanding of capabilities, and creating a basis to innovative with the technology. Some design principles for AM exist in the literature; however, designers seek more fundamental and practical design guidelines for successfully creating and building their customized design artefacts, especially as Industry 4.0 moves forward. In this study, a crowdsourced repository for additively manufacturable components is used as the source of design data, within an empirical study, to extract practical design principles for AM. A total of 23 crowdsourced design principles for AM are extracted and clustered according to level specificity: (i) design for manufacturing, (ii) design for digital manufacturing, (iii) design for AM, and (iv) design for fused deposition modeling. These 23 AM design principles, as a foundation for AM design and Industry 4.0, are provided in a common framework; expressed for ready use by designers, developers, and researchers; and illustrated through some contemporary designs.

References

1.
Mueller
,
B.
,
2012
, “
Additive Manufacturing Technologies–Rapid Prototyping to Direct Digital Manufacturing
,”
Assembly Automation
,
32
(
2
), pp.
196
216
.
2.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
McAlea
,
K. P.
,
1997
,
Solid Freeform Fabrication: a new Direction in Manufacturing
,
Kluwer Academic Publishers
,
Norwell, MA
, pp.
25
49
, 2061.
3.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
,
John Wiley & Sons
,
Hoboken, New Jersey
.
4.
Lasi
,
H.
,
Fettke
,
P.
,
Kemper
,
H. G.
,
Feld
,
T.
, and
Hoffmann
,
M.
,
2014
, “
Industry 4.0
,”
Business Information Syst. Eng.
,
6
(
4
), pp.
239
242
.
5.
Frank
,
A. G.
,
Dalenogare
,
L. S.
, and
Ayala
,
N. F.
,
2019
, “
Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies
,”
Int. J. Prod. Economics
,
210
(
4
), pp.
15
26
.
6.
D’Aveni
,
R.
,
2015
, “
The 3-D Printing Revolution
,”
Harvard Business Rev.
,
93
(
5
), pp.
40
48
.
7.
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
(
6
), pp.
43
56
.
8.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
).
9.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
10.
Maidin
,
S.
,
Campbell
,
I.
, and
Pei
,
E.
,
2012
, “
Development of a Design Feature Database to Support Design for Additive Manufacturing
,”
Assembly Autom.
,
32
(
3
), pp.
235
244
.
11.
Booth
,
J. W.
,
Alperovich
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2016
, “
The Design for Additive Manufacturing Worksheet
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p.
V007T06A041
,
American Society of Mechanical Engineers
, Vol.
50190
.
12.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2015
, “
How do Designers Generate New Ideas? Design Heuristics Across Two Disciplines
,”
Des. Sci.
,
1
(
e4
), pp.
1
29
.
13.
Daly
,
S. R.
,
Christian
,
J. L.
,
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2012
, “
Assessing Design Heuristics for Idea Generation in an Introductory Engineering Course
,”
Int. J. Eng. Educ.
,
28
(
2
), p.
463
.
14.
Daly
,
S. R.
,
Yilmaz
,
S.
,
Christian
,
J. L.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2012
, “
Design Heuristics in Engineering Concept Generation
,”
J. Eng. Educ.
,
101
(
4
), pp.
601
629
.
15.
Gray
,
C. M.
,
Seifert
,
C. M.
,
Yilmaz
,
S.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
What is the Content of “Design Thinking”? Design Heuristics as Conceptual Repertoire
,”
Int. J. Eng. Educ.
,
32
(
3B
), pp.
1349
1355
.
16.
Seifert
,
C. M.
,
Gonzalez
,
R.
,
Yilmaz
,
S.
, and
Daly
,
S.
,
2015
, “Boosting Creativity in Idea Generation Using Design Heuristics,”
Des. Des. Thinking: Essentials PDMA’s New Product Develop. Ser.
,
John Wiley and Sons
,
Hoboken, NJ
, pp.
71
86
.
17.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2016
, “
Evidence-Based Design Heuristics for Idea Generation
,”
Des. Studies
,
46
(
5
), pp.
95
124
.
18.
Yilmaz
,
S.
,
Seifert
,
C.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
Design Heuristics in Innovative Products
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071102
.
19.
Hwang
,
D.
, and
Park
,
W.
,
2018
, “
Design Heuristics Set for X: A Design Aid for Assistive Product Concept Generation
,”
Des. Studies
,
58
(
5
), pp.
89
126
.
20.
Perez
,
K. B.
,
Anderson
,
D. S.
, and
Wood
,
K. L.
,
2015
, “
Crowdsourced Design Principles for Leveraging the Capabilities of Additive Manufacturing
,”
International Conference of Engineering Design
,
Milan, Italy
,
July 27–30
, pp.
1
10
.
21.
Perez
,
K. B.
,
2018
,
Design Innovation With Additive Manufacturing (AM): An AM-Centric Design Innovation Process
,
Singapore University of Technology and Design
,
Singapore
.
22.
Lauff
,
C. A.
,
Perez
,
K. B.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2019
, “
Design Principle Cards: Toolset to Support Innovations With Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V004T05A005
,
American Society of Mechanical Engineers
, Vol.
59223
.
23.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2017
, “
Design Heuristics for Additive Manufacturing
,”
DS 87-5 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 5: Design for X, Design to X
,
Vancouver, Canada
,
Aug. 21–25, 2017
, pp.
091
100
.
24.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
.
25.
Lindwall
,
A.
, and
Törlind
,
P.
,
2018
, “
Evaluating Design Heuristics for Additive Manufacturing as an Explorative Workshop Method
,”
DS 92: Proceedings of the DESIGN 2018 15th International Design Conference
,
Dubrovnik, Croatia
,
May 21–24
, pp.
1221
1232
.
26.
Schumacher
,
F.
,
Watschke
,
H.
,
Kuschmitz
,
S.
, and
Vietor
,
T.
,
2019
, “
Goal Oriented Provision of Design Principles for Additive Manufacturing to Support Conceptual Design
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
.
27.
Valjak
,
F.
, and
Bojčetić
,
N.
,
2019
, “
Conception of Design Principles for Additive Manufacturing
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
.
28.
Flath
,
C. M.
,
Friesike
,
S.
,
Wirth
,
M.
, and
Thiesse
,
F.
,
2017
, “
Copy, Transform, Combine: Exploring the Remix as a Form of Innovation
,”
J. Information Technol.
,
32
(
4
), pp.
306
325
.
29.
Kyriakou
,
H.
,
Englehardt
,
S.
, and
Nickerson
,
J. V.
,
2012
,
Networks of Innovation in 3D Printing. Workshop on Information in Networks
, ,
Accessed August 20, 2012
.
30.
Kyriakou
,
H.
, and
Nickerson
,
J. V.
,
2014
, “
Collective Innovation in Open Source Hardware
,”
Collective Intelligence
,
Boston, MA
,
June 10–12
.
31.
Buehler
,
E.
,
Branham
,
S.
,
Ali
,
A.
,
Chang
,
J. J.
,
Hofmann
,
M. K.
,
Hurst
,
A.
, and
Kane
,
S. K.
,
2015
, “
Sharing is Caring: Assistive Technology Designs on Thingiverse
,”
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
,
Seoul, South Korea
,
Apr. 18–23
, pp.
525
534
.
32.
West
,
J.
, and
Kuk
,
G.
,
2016
, “
The Complementarity of Openness: How MakerBot Leveraged Thingiverse in 3D Printing
,”
Technol. Forecasting Social Change
,
102
(
1
), pp.
169
181
.
33.
Papadimitriou
,
S.
,
Papalexakis
,
E.
,
Liu
,
B.
, and
Xiong
,
H.
,
2015
, “
Remix in 3D Printing: What Your Sources say About you
,”
Proceedings of the 24th International Conference on World Wide Web
,
Florence, Italy
,
May 18–22
, pp.
367
368
.
34.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2015
, “
Design Principles: The Foundation of Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
35.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
36.
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2011
, “
Creativity Through Design Heuristics: A Case Study of Expert Product Design
,”
Des. Studies
,
32
(
4
), pp.
384
415
.
37.
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2010
, “
Cognitive Heuristics in Design: Instructional Strategies to Increase Creativity in Idea Generation
,”
Artificial Intell. Eng. Des., Anal. Manuf.: AI EDAM
,
24
(
3
), p.
335
.
38.
Camburn
,
B.
,
Dunlap
,
B.
,
Gurjar
,
T.
,
Hamon
,
C.
,
Green
,
M.
,
Jensen
,
D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K.
,
2015
, “
A Systematic Method for Design Prototyping
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081102
.
39.
Camburn
,
B.
,
Viswanathan
,
V.
,
Linsey
,
J.
,
Anderson
,
D.
,
Jensen
,
D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K.
,
2017
, “
Design Prototyping Methods: State of the Art in Strategies, Techniques, and Guidelines
,”
Des. Sci.
,
3
(
e13
), pp.
1
33
.
40.
Altshuller
,
G. S.
,
1999
,
The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center, Inc.
,
Hagerstown, MD
.
41.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
42.
Keese
,
D. A.
,
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2007
, “
Empirically-derived Principles for Designing Products with Flexibility for Future Evolution
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, pp.
483
498
.
43.
Mcadams
,
D.
,
2003
, “
Identification and Codification of Principles for Functional Tolerance Design
,”
J. Eng. Des.
,
14
(
3
), pp.
355
375
.
44.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2015
, “
Principles for Designing Products With Flexibility for Future Evolution
,”
Int. J. Mass Custom.
,
5
(
1
), pp.
22
54
.
45.
Camburn
,
B. A.
,
Sng
,
K. H.
,
Perez
,
K. B.
,
Otto
,
K.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Crawford
,
R.
,
2015
, “
The way Makers Prototype: Principles of DIY Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
46.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Studies
,
21
(
1
), pp.
5
31
.
47.
Camburn
,
B. A.
,
Auernhammer
,
J. M.
,
Sng
,
K. H. E.
,
Mignone
,
P. J.
,
Arlitt
,
R. M.
,
Perez
,
K. B.
, and
Wood
,
K. L.
,
2017
, “
Design Innovation: A Study of Integrated Practice
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
.
48.
McAdams
,
D.
, and
Wood
,
K.
,
1999
, “
Methods and Principles for Concurrent Functional Tolerance Design
,”
Proceedings of the 1999 ASME Design for Manufacturing Conference
,
Las Vegas, NV
,
Sept. 12–16
, pp.
217
231
.
49.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2005
, “
Capturing Creativity: Using a Design Repository to Drive Concept Innovation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
331
342
, Vol.
47403
.
50.
Camburn
,
B.
,
Karen
,
S.
,
Perez
,
K. B.
,
Jensen
,
D.
,
Crawford
,
R.
,
Otto
,
K.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Richard
,
C.
,
2015
, “
The way makers prototype: principles of DIY design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
331
342
, Vol.
47403
.
51.
Blessing
,
L. T.
, and
Chakrabarti
,
A.
,
2009
,
DRM: A Design Research Methodology
,
Springer
,
London
,
13
42
.
52.
Camburn
,
B.
, and
Wood
,
K. L.
,
2018
, “
Principles of Maker and DIY Fabrication: Enabling Design Prototypes at low Cost
,”
Des. Studies
,
58
(
5
), pp.
63
88
.
53.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Hoboken, NJ
.
54.
Han
,
J.
,
Pei
,
J.
, and
Kamber
,
M.
,
2011
,
Data Mining: Concepts and Techniques
, 3rd ed.,
Elsevier
,
New York
.
55.
Design Innovation Learning Modules
,
2019
, http://www.dimodules.com, Accessed June 4, 2019.
56.
McHugh
,
M. L.
,
2012
, “
Interrater Reliability: The Kappa Statistic
,”
Biochem. Med.: Biochem. Med.
,
22
(
3
), pp.
276
282
.
57.
Greer
,
J. L.
,
Jensen
,
D. D.
, and
Wood
,
K. L.
,
2004
, “
Effort Flow Analysis: A Methodology for Directed Product Evolution
,”
Des. Studies
,
25
(
2
), pp.
193
214
.
58.
Gibson
,
I.
,
Goenka
,
G.
,
Narasimhan
,
R.
, and
Bhat
,
N.
,
2010
, “Design Rules for Additive Manufacture,”
Solid Freeform Fabrication Symposium
,
University Of Texas
,
Austin, TX
,
705
716
.
59.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
,
26
(
7
), pp.
505
520
.
60.
Chen
,
L.
, and
Sass
,
L.
,
2017
, “
Generative Computer-Aided Design: Multi-Modality Large-Scale Direct Physical Production
,”
Comput-Aided Des. Appl.
,
14
(
1
), pp.
83
94
.
61.
Hwang
,
D.
,
Lauff
,
C. A.
,
Perez
,
K. B.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2020
, “
Comparing the Impacts of Design Principles for Additive Manufacturing on Student and Experienced Designers
,”
Int. J. Eng. Education
,
36
(
6
), pp.
1862
1876
.
62.
Siemens
,
2018
,
Additive Manufacturing: Siemens Uses Innovative Technology to Produce Gas Turbines, Siemens, Retrieved from
https://press.siemens.com/global/en/feature/additive-manufacturing-siemens-uses-innovative-technology-produce-gas-turbines,
Accessed March 19, 2018
.
63.
Kellner
,
T.
,
2017
,
An Epiphany Of Disruption: GE Additive Chief Explains How 3D Printing Will Upend Manufacturing, GE Reports, Retrieved from
https://www.ge.com/news/reports/epiphany-disruption-ge-additive-chief-explains-3d-printing-will-upend-manufacturing,
Accessed November 13, 2017
.
64.
Micallef
,
K.
,
2016
,
Airbus Generates Bionic Design for Flights of the Future, Autodesk Redshift, Retrieved from
https://www.proquest.com/docview/1802440208?accountid=27788,
Accessed July 6, 2016
.
65.
Markman
,
A. B.
, and
Ross
,
B. H.
,
2003
, “
Category Use and Category Learning
,”
Psychol. Bull.
,
129
(
4
), p.
592
.
66.
Rosen
,
D. W.
,
2007
, “
Design for Additive Manufacturing: A Method to Explore Unexplored Regions of the Design Space
,”
Eighteenth Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
402
415
.
67.
Seepersad
,
C. C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2013
, “
A Designer’s Guide for
,”
International Solid Freeform Fabrication Symposium Proceedings
,
Austin, TX
,
Aug. 4–6
, pp.
921
931
.
68.
Thingiverse
,
2019
,
Retrieved from
https://www.thingiverse.com/explore/collections/page:3,
Accessed June 4, 2019.
69.
Perez
,
K. B.
,
Lauff
,
C. A.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2019
, “
Design Innovation With Additive Manufacturing: A
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V007T06A054
.
70.
Dharmawan
,
A. G.
,
Xavier
,
P.
,
Hariri
,
H. H.
,
Soh
,
G. S.
,
Baji
,
A.
,
Bouffanais
,
R.
,
Foong
,
S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2019
, “
Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer dry Adhesives
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020902
.
You do not currently have access to this content.