Abstract

Complex systems must sustain value over extended lifetimes, often in the face of significant uncertainty. Flexibility “in” systems have been shown to be highly valuable for large monolithic systems (LMS). However, other research highlighted that the value of flexibility “in” is highly contingent on delays in implementation. These limitations become more important when applied to other classes of complex systems, including fleet-based systems (FBS). To overcome these challenges, this paper introduces a complementary approach to flexible design, termed flexibility “of,” and applies it to a case study of a fleet of military vehicles (an FBS). Unlike LMS, FBS are composed of multiple identical units that collectively deliver value. While each unit is itself a complex system (e.g., a tank or aircraft), the collective nature of the operations provides additional paths to flexibility: in addition to implementing flexibility at the vehicle level, flexibility can be applied to the management of the fleet. Flexibility “of” involves procuring a mixed capability fleet upfront and then actively managing which subsets of that fleet are deployed to meet emerging needs. Our results demonstrate the potential value for an of strategy and provide guidance for when different flexibility strategies should be adopted alone or in combination.

References

1.
Fricke
,
E.
, and
Schulz
,
A. P.
,
2005
, “
Design for Changeability (DFC): Principles to Enable Changes in Systems Throughout Their Entire Lifecycle
,”
Syst. Eng.
,
8
(
4
), p.
20039
.
2.
Hastings
,
D.
, and
McManus
,
H.
,
2004
, “
A Framework for Understanding Uncertainty and Its Mitigation and Exploitation in Complex Systems
,”
2004 Engineering Systems Symposium
,
Cambridge, MA
.
3.
Wang
,
T.
, and
De Neufville
,
R.
,
2005
, “
Real Options in Projects
,”
Real Options Conference
,
Paris, France
,
June
.
4.
De Neufville
,
R.
, and
Scholtes
,
S.
,
2011
,
Flexibility in Engineering Design
,
MIT Press
,
Cambridge, MA
.
5.
Martins
,
J.
,
Marques
,
R. C.
, and
Cruz
,
C. O.
,
2015
, “
Real Options in Infrastructure: Revisiting the Literature
,”
J. Infrastruct. Syst.
,
21
(
1
), p.
04014026
.
6.
Kang
,
N.
,
Bayrak
,
A. E.
, and
Papalambros
,
P. Y.
,
2018
, “
Robustness and Real Options for Vehicle Design and Investment Decisions Under Gas Price and Regulatory Uncertainties
,”
ASME J. Mech. Des.
,
140
(
10
), p.
101404
.
7.
Sapol
,
S. J.
, and
Szajnfarber
,
Z.
,
2020
, “
Revisiting Flexibility in Design: An Analysis of the Impact of Implementation Uncertainty on the Value of Real Options
,”
ASME J. Mech. Des.
,
142
(
12
), p.
121701
.
8.
Gil
,
N.
,
2007
, “
On the Value of Project Safeguards: Embedding Real Options in Complex Products and Systems
,”
Res. Policy
,
36
(
7
), pp.
980
999
.
9.
Cardin
,
M.-A.
,
2014
, “
Enabling Flexibility in Engineering Systems: A Taxonomy of Procedures and a Design Framework
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011005
.
10.
Gibson
,
T.
,
2013
, “Out on a limb,” Army Research Laboratory Public Affairs Office, https://www.army.mil/article/101572/out_on_a_limb.
11.
Gooch
,
W.
,
Burkins
,
M.
,
Mackenzie
,
D.
, and
Vodenicharov
,
S.
,
2005
, “
Ballistic Analysis of Bulgarian Electroslag Remelted Dual Hard Steel Armor Plate
,”
Proceedings of the 22nd International Symposium on Ballistics
,
Vancouver, Canada
.
12.
GAO
,
2005
, “
Government Accountability Office Report 05-275: Defense Logistics: Actions Needed to Improve the Availability of Critical Items During Current and Future Operations
.”
13.
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2008
, “
Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value
,”
Syst. Eng.
,
11
(
3
), pp.
246
262
.
14.
Saleh
,
J. H.
,
Mark
,
G.
, and
Jordan
,
N. C.
,
2009
, “
Flexibility: A Multi-Disciplinary Literature Review and a Research Agenda for Designing Flexible Engineering Systems
,”
J. Eng. Des.
,
20
(
3
), pp.
307
323
.
15.
Chalupnik
,
M. J.
,
Wynn
,
D. C.
,
and Clarkson
,
P. J.
,
2009
, “
Approaches to Mitigate the Impact of Uncertainty in Development Processes
,” DS 58-1: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 1, Design Processes,
Palo Alto, CA
,
Aug. 24–27
, pp.
459
470
.
16.
Ryan
,
E. T.
,
Jacques
,
D. R.
, and
Colombi
,
J. M.
,
2013
, “
An Ontological Framework for Clarifying Flexibility-Related Terminology Via Literature Survey
,”
Syst. Eng.
,
16
(
1
), pp.
99
110
.
17.
De Weck
,
O. L.
,
De Neufville
,
R.
, and
Chaize
,
M.
,
2004
, “
Staged Deployment of Communications Satellite Constellations in Low Earth Orbit
,”
J. Aerosp. Comput., Inform. Commun.
,
1
(
3
), pp.
119
136
.
18.
De Neufville
,
R.
,
Scholtes
,
S.
, and
Wang
,
T.
,
2006
, “
Real Options by Spreadsheet: Parking Garage Case Example
,”
J. Infrastruct. Syst.
,
12
(
2
), pp.
107
111
.
19.
De Weck
,
O.
,
Eckert
,
C. M.
,
and Clarkson
,
P. J.
,
2007
, “
A Classification of Uncertainty for Early Product and System Design
,” DS 42: Proceedings of ICED 2007, the 16th International Conference on Engineering Design, Paris, France, July 28–31, pp.
159
160
.
20.
de Neufville
,
R.
,
Lee
,
Y. S.
, and
Scholtes
,
S.
,
2008
, “
Flexibility in Hospital Infrastructure Design
,”
2008 First International Conference on Infrastructure Systems and Services
,
Rotterdam, Netherlands
,
November
, pp.
8
10
.
21.
Lin
,
J.
,
de Weck
,
O.
,
de Neufville
,
R.
, and
Yue
,
H. K.
,
2013
, “
Enhancing the Value of Offshore Developments With Flexible Subsea Tiebacks
,”
J. Petrol. Sci. Eng.
,
102
(
1
), pp.
73
83
.
22.
Cardin
,
M.-A.
,
Ranjbar-Bourani
,
M.
, and
De Neufville
,
R.
,
2015
, “
Improving the Lifecycle Performance of Engineering Projects With Flexible Strategies: Example of On-shore LNG Production Design
,”
Syst. Eng.
,
18
(
3
), pp.
253
268
.
23.
Caunhye
,
A. M.
, and
Cardin
,
M.-A.
,
2018
, “
Towards More Resilient Integrated Power Grid Capacity Expansion: A Robust Optimization Approach With Operational Flexibility
,”
Energy Econ.
,
72
(
1
), pp.
20
34
.
24.
Page
,
J.
,
2012
, “
Flexibility in Early Stage Design of US Navy Ships: An Analysis of Options
,”
J. Ship Prod. Des.
,
28
(
3
), pp.
128
133
.
25.
Myers
,
S. C.
,
1977
, “
Determinants of Corporate Borrowing
,”
J. Financial Econ.
,
5
(
2
), pp.
147
175
.
26.
Myers
,
S. C.
,
1984
, “
Finance Theory and Financial Strategy
,”
Interfaces
,
14
(
1
), pp.
126
137
.
27.
Trigeorgis
,
L.
,
1996
,
Real Options: Managerial Flexibility and Strategy in Resource Allocation
,
MIT Press
,
Cambridge, MA
.
28.
Gesner
,
G. A.
, and
Jardim
,
J.
,
1998
, “
Bridge Within a Bridge
,”
Civil Eng.
,
68
(
10
), p.
44
.
29.
Richard de Neufville
,
L.
,
Scholtes
,
S.
, and
Wang
,
T.
,
2006
, “
Valuing Real Options by Spreadsheet Parking Garage Case Example
,”
ASCE J. Infrastruct. Syst.
,
12
(
2
).
30.
Mikaelian
,
T.
,
Rhodes
,
D. H.
,
Nightingale
,
D. J.
, and
Hastings
,
D. E.
,
2011
, “
A Logical Approach to Real Options Identification With Application to UAV Systems
,”
IEEE Trans. Syst. Man Cyber. Part A: Syst. Humans
,
42
(
1
), pp.
32
47
.
31.
Ulrich
,
K.
,
1994
,
Management of Design
,
Springer
,
New York
, pp.
219
231
.
32.
Steward
,
D. V.
,
1981
, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
,
EM-28
(
3
), pp.
71
74
.
33.
Cardin
,
M.-A.
,
Xie
,
Q.
,
Ng
,
T. S.
,
Wang
,
S.
, and
Hu
,
J.
,
2017
, “
An Approach for Analyzing and Managing Flexibility in Engineering Systems Design Based on Decision Rules and Multistage Stochastic Programming
,”
IISE Trans.
,
49
(
1
), pp.
1
12
.
34.
Cardin
,
M.-A.
,
Deng
,
Y.
, and
Sun
,
C.
,
2017
, “
Real Options and Flexibility Analysis in Design and Management of One-Way Mobility On-Demand Systems Using Decision Rules
,”
Trans. Res. Part C: Emerg. Technol.
,
84
(
1
), pp.
265
287
.
35.
Zhang
,
S.
, and
Cardin
,
M.-A.
,
2017
, “
Flexibility and Real Options Analysis in Emergency Medical Services Systems Using Decision Rules and Multi-Stage Stochastic Programming
,”
Trans. Res. Part E: Logist. Trans. Rev.
,
107
(
1
), pp.
120
140
.
36.
Szajnfarber
,
Z.
,
McCabe
,
L.
, and
Rohrbach
,
A.
,
2015
, “
Architecting Technology Transition Pathways: Insights From the Military Tactical Network Upgrade
,”
Syst. Eng.
,
18
(
4
), pp.
377
395
.
37.
Ross
,
A.
, and
Hastings
,
D.
,
2006
, “
Assessing Changeability in Aerospace Systems Architecting and Design Using Dynamic Multi-Attribute Tradespace Exploration
,”
AIAA Space Forum
,
San Jose, CA
,
September
, p.
7255
.
38.
Mekdeci
,
B.
,
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D.
,
2011
, “
System Architecture Pliability and Trading Operations in Tradespace Exploration
,”
2011 IEEE International Systems Conference
,
Montreal, QC, Canada
,
April
, IEEE, pp.
387
394
.
39.
Rehn
,
C. F.
,
Pettersen
,
S. S.
,
Garcia
,
J. J.
,
Brett
,
P. O.
,
Erikstad
,
S. O.
,
Asbjørnslett
,
B. E.
,
Ross
,
A. M.
, and
Rhodes
,
D. H.
,
2019
, “
Quantification of Changeability Level for Engineering Systems
,”
Syst. Eng.
,
22
(
1
), pp.
80
94
.
40.
Eftekhar
,
M.
, and
Van Wassenhove
,
L. N.
,
2016
, “
Fleet Management Policies for Humanitarian Organizations: Beyond the Utilization—Residual Value Trade-Off
,”
J. Oper. Manage.
,
44
(
1
), pp.
1
12
.
41.
Richey
,
R. G.
,
Natarajarathinam
,
M.
,
Capar
,
I.
, and
Narayanan
,
A.
,
2009
, “
Managing Supply Chains in Times of Crisis: A Review of Literature and Insights
,”
Int. J. Phys. Distrib. Logist. Manage.
,
39
(
7
), pp.
535
573
.
42.
Martinez
,
A. J. P.
,
Stapleton
,
O.
, and
Van Wassenhove
,
L. N.
,
2011
, “
Field Vehicle Fleet Management in Humanitarian Operations: A Case-Based Approach
,”
J. Oper. Manage.
,
29
(
5
), pp.
404
421
.
43.
Besiou
,
M.
,
Pedraza-Martinez
,
A. J.
, and
Van Wassenhove
,
L. N.
,
2014
, “
Vehicle Supply Chains in Humanitarian Operations: Decentralization, Operational Mix, and Earmarked Funding
,”
Prod. Oper. Manage.
,
23
(
11
), pp.
1950
1965
.
44.
Pedraza-Martinez
,
A. J.
, and
Van Wassenhove
,
L. N.
,
2013
, “
Vehicle Replacement in the International Committee of the Red Cross
,”
Prod. Oper. Manage.
,
22
(
2
), pp.
365
376
.
45.
Eftekhar
,
M.
,
Masini
,
A.
,
Robotis
,
A.
, and
Van Wassenhove
,
L. N.
,
2014
, “
Vehicle Procurement Policy for Humanitarian Development Programs
,”
Prod. Oper. Manage.
,
23
(
6
), pp.
951
964
.
46.
Rushmeier
,
R. A.
, and
Kontogiorgis
,
S. A.
,
1997
, “
Advances in the Optimization of Airline Fleet Assignment
,”
Trans. Sci.
,
31
(
2
), pp.
159
169
.
47.
List
,
G. F.
,
Wood
,
B.
,
Nozick
,
L. K.
,
Turnquist
,
M. A.
,
Jones
,
D. A.
,
Kjeldgaard
,
E. A.
, and
Lawton
,
C. R.
,
2003
, “
Robust Optimization for Fleet Planning Under Uncertainty
,”
Trans. Res. Part E: Logist. Trans. Rev.
,
39
(
3
), pp.
209
227
.
48.
McKay
,
S.
,
Boyer
,
M. E.
,
Beyene
,
N. M.
,
Lerario
,
M.
,
Lewis
,
M. W.
,
Stanley
,
K. D.
,
Steeb
,
R.
,
Wilson
,
B.
, and
Giglio
,
K.
,
2020
, “
Automating Army Convoys, Technical and Tactical Risks and Opportunities
.” Tech. Rep., Rand Arroyo Center, Santa Monica, CA.
49.
DOD
,
2019
, “
Fy2020 Program Acquisition Costs by Weapons System
.”
50.
Reardon
,
M. J.
,
Charlston
,
J. A.
, and
Charlston
,
J.
,
2007
,
From Transformation to Combat: The First Stryker Brigade at War
, Vol.
70
,
Government Printing Office
.
51.
Sullivan
,
M.
,
Masters
,
T.
,
Anderson
,
P.
,
Bennett
,
J.
,
Bonner
,
M.
,
Hassinger
,
K.
,
Porter
,
M.
,
Suding
,
M.
, and
Volk
,
A.
,
2015
, F-35 Joint Strike Fighter: Assessment Needed to Address Affordability Challenges.”
Tech. Rep., Government Accountability Office
,
Washington, DC
.
52.
Army
,
2018
, “
Field Manual 3-0 Operations
.”
53.
Army
,
2017
, “
Fiscal Year 2018 President’s Budget Submission: Military Personnel, Army Justification Book
.”
54.
Belasco
,
A.
,
2009
, “
Troop Levels in the Afghan and Iraq Wars, fy2001-fy2012: Cost and Other Potential Issues
.” Library of Congress Washington DC Congressional Research Service.
55.
O’Hanlon
,
M. E.
, and
Campbell
,
J. H.
,
2008
, “Iraq Index: Tracking Variables of Reconstruction & Security in Post-saddam Iraq.”
Tech. Rep., Brookings Institute
.
56.
Army
,
2010
, “
Fiscal Year 2018 President’s Budget Submission: Other Procurement, Army Justification Book
.”
57.
OMB
,
2019
, “
OMB Circular No. a-94
.”
You do not currently have access to this content.