Abstract

This paper addresses the synthesis of one degree-of-freedom (1DOF) linkages that can exactly transmit angular motion between coplanar axes (i.e., parallel axes or intersectant axes) with arbitrarily prescribed constant velocity ratios. According to motion polynomials over dual quaternions and pure rolling models between two circles, an algebraic approach is presented to precisely synthesize new 1DOF linkages with arbitrarily prescribed constant velocity ratios. The approach includes four steps: (a) formulate a characteristic curve occurred by the pure rolling, (b) compute the motion polynomial of the minimal degree that can generate the curve, (c) deal with the factorization of the motion polynomial to construct an open chain, and (d) convert the open chain to a 1DOF linkage. Using this approach, several 1DOF planar, spherical, and spatial linkages for angular motion transmission between parallel axes or intersectant ones are constructed by designating various velocity ratios. Taking the planar and spherical linkages with a constant 1:2 velocity ratio as examples, kinematics analysis is implemented to prove their motion characteristics. The result shows that the generated linkages indeed can transmit angular motion between two coplanar axes with constant velocity ratios. Meanwhile, three-dimensional (3D)-printed prototypes of these linkages also demonstrate such a conclusion. This work provides a framework for synthesizing linkages that have great application potential to transmit motion in robotic systems that require low inertia to achieve reciprocating motion with high speed and accuracy.

References

1.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Andersen
,
M. S.
, and
Bai
,
S.
,
2019
, “
A Compact 3-DOF Shoulder Mechanism Constructed With Scissors Linkages for Exoskeleton Applications
,”
Mech. Mach. Theory
,
132
, pp.
264
278
.
2.
Yoon
,
D.
,
Kang
,
K.
,
Manzoor
,
S.
, and
Choi
,
Y.
,
2021
, “
The Improved DLR Wrist: Design and Analysis of 2-Degrees-of-Freedom Rotational Mechanism Using Spatial Antiparallelogram Linkages
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053303
.
3.
Andrés
,
F. J.
,
Pérez-González
,
A.
,
Rubert
,
C.
,
Fuentes
,
J.
, and
Sospedra
,
B.
,
2019
, “
Comparison of Grasping Performance of Tendon and Linkage Transmission Systems in an Electric-Powered Low-Cost Hand Prosthesis
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011018
.
4.
Kim
,
J. W.
,
Lee
,
S.
,
Seo
,
T.
, and
Kim
,
J.
,
2018
, “
A New Non-Servo Motor Type Automatic Tool Changing Mechanism Based on Rotational Transmission With Dual Four-Bar Linkages
,”
Meccanica
,
53
(
9
), pp.
2447
2459
.
5.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
Springer
,
New York
.
6.
Liu
,
Y.
, and
McPhee
,
J.
,
2007
, “
Automated Kinematic Synthesis of Planar Mechanisms With Revolute Joints
,”
Mecha. Based Des. Struct. Mach.
,
35
(
4
), pp.
405
445
.
7.
Ebrahimi
,
S.
, and
Payvandy
,
P.
,
2015
, “
Efficient Constrained Synthesis of Path Generating Four-Bar Linkages Based on the Heuristic Optimization Algorithms
,”
Mech. Mach. Theory
,
85
, pp.
189
204
.
8.
Liu
,
W.
,
Sun
,
W.
, and
Chu
,
J.
,
2020
, “
Synthesis of a Spatial RRSS Mechanism for Path Generation Using the Numerical Atlas Method
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012303
.
9.
Sonawale
,
K. H.
, and
McCarthy
,
J. M.
,
2016
, “
Synthesis of Eight-bar Linkages by Constraining a 6R Loop
,”
Mech. Mach. Theory
,
105
, pp.
337
351
.
10.
Yue
,
C.
,
Su
,
H. J.
, and
Ge
,
Q. J.
,
2012
, “
A Hybrid Computer-Aided Linkage Design System for Tracing Open and Closed Planar Curves
,”
Comput.-Aided Des.
,
44
(
11
), pp.
1141
1150
.
11.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2012
, “
Unified Synthesis of a Planar Four-bar Mechanism for Function Generation Using A Spring-Connected Arbitrarily Sized Block Model
,”
Mech. Mach. Theory
,
49
, pp.
141
156
.
12.
Lin
,
S.
,
Wang
,
H.
,
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
Geometric Method of Spatial Linkages Synthesis for Function Generation With Three Finite Positions
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082303
.
13.
Kiper
,
G.
, and
Bilgincan
,
T.
,
2015
, “
Function Generation Synthesis of Spherical 5R Mechanism With Regional Spacing and Chebyshev Approximation
,”
Mech. Mach. Theory
,
90
, pp.
37
46
.
14.
Ali
,
H.
,
Murray
,
A. P.
, and
Myszka
,
D. H.
,
2017
, “
The Synthesis of Function Generating Mechanisms for Periodic Curves Using Large Numbers of Double-Crank Linkages
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031002
.
15.
Bai
,
S.
,
Wang
,
D.
, and
Dong
,
H.
,
2016
, “
A Unified Formulation for Dimensional Synthesis of Stephenson Linkages
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041009
.
16.
Sun
,
J.
,
Wang
,
P.
,
Liu
,
W.
, and
Chu
,
J.
,
2018
, “
Non-Integer-Period Motion Generation of a Planar Four-Bar Mechanism Using Wavelet Series
,”
Mech. Mach. Theory
,
121
, pp.
28
41
.
17.
Li
,
X.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2018
, “
A Unified Approach to Exact and Approximate Motion Synthesis of Spherical Four-Bar Linkages via Kinematic Mapping
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011003
.
18.
Suárez-Velásquez
,
H. A.
,
Cervantes-Sánchez
,
J. J.
, and
Rico-Martínez
,
J. M.
,
2018
, “
Synthesis of a Novel Planar Linkage to Visit Up to Tight Poses
,”
Mech. Based Des. Struct. Mach.
,
46
(
6
), pp.
781
799
.
19.
Bai
,
S.
,
Li
,
Z.
, and
Li
,
R.
,
2020
, “
Exact Synthesis and Input–Output Analysis of 1-DOF Planar Linkages for Visiting 10 Poses
,”
Mech. Mach. Theory
,
143
, p.
103625
.
20.
Brake
,
D. A.
,
Hauenstein
,
J. D.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Wample
,
C. W.
,
2016
, “
The Complete Solution of Alt–Burmester Synthesis Problems for Four-Bar Linkages
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041018
.
21.
Zimmerman
,
R. A.
,
2018
, “
Planar Linkage Synthesis for Mixed Motion, Path, and Function Generation Using Poles and Rotation Angles
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025004
.
22.
Tong
,
Y.
,
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2013
, “
Four-Bar Linkage Synthesis for a Combination of Motion and Path-Point Generation
,”
Proceedings of ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, p.
V06AT07A054
.
23.
Hain
,
K.
, and
Marx
,
G.
,
1959
, “
How to Replace Gears by Mechanisms
,”
Trans. ASME
,
81
(
2
), pp.
126
130
.
24.
Hunt
,
K. H.
,
1973
, “
Constant-Velocity Shaft Couplings: A General Theory
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
455
464
.
25.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2012
,
Advances in Reconfigurable Mechanisms and Robots
,
I. M.
Zoppi
,
J. S.
Dai
,
X.
Kong
, eds.,
Springer
,
London
, pp.
35
43
.
26.
Alizadeh
,
D.
,
Angeles
,
J.
, and
Nokleby
,
S.
,
2013
, “
Optimum Design of a Spherical Quasi-Homokinetic Linkage for Motion Transmission Between Orthogonal Axes
,”
Mech. Mach. Theory
,
59
, pp.
107
118
.
27.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Linkage-Based Analysis and Optimization of an Underactuated Planar Manipulator for In-Hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011002
.
28.
Seherr-Thoss
,
H. C.
,
Schmelz
,
F.
, and
Aucktor
,
E.
,
2006
,
Universal Joints and Drive Shafts: Analysis, Design, Application
,
Springer
,
New York
.
29.
Kocabas
,
H.
,
2007
, “
Design and Analysis of a Spherical Constant Velocity Coupling Mechanism
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
991
998
.
30.
Watson
,
I.
,
Prusty
,
B. G.
, and
Olsen
,
J.
,
2013
, “
Conceptual Design Optimisation of a Constant-Velocity Coupling
,”
Mech. Mach. Theory
,
68
, pp.
19
34
.
31.
Carricato
,
M.
,
2009
, “
Decoupled and Homokinetic Transmission of Rotational Motion via Constant-Velocity Joints in Closed-Chain Orientational Manipulators
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041008
.
32.
Watanabe
,
K.
,
Kawakatsu
,
T.
, and
Nakao
,
S.
,
2005
, “
Kinematic and Static Analyses of Tripod Constant Velocity Joints of the Spherical End Spider Type
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1137
1144
.
33.
Schoen
,
A. H.
,
1962
, “
Reciprocating Mechanism for Producing Constant Rectilinear Velocity
,”
Transaction of the Seventh Conference on Mechanisms
,
Purdue University
,
West Lafayette, IN
,
Oct. 8–10
, pp.
39
43
.
34.
Figliolini
,
G.
, and
Pennestrì
,
E.
,
2015
, “
Synthesis of Quasi-constant Transmission Ratio Planar Linkages
,”
ASME J. Mech. Des.
,
137
(
10
), p.
102301
.
35.
Hartenbertg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
,
210
213
.
36.
Suh
,
C. H.
,
1970
, “
Design of Spatial Linkages to Replace Gears
,”
J. Mech.
,
5
(
2
), pp.
217
237
.
37.
Rothenhofer
,
G.
,
Walsh
,
C.
, and
Slocum
,
A.
,
2010
, “
Transmission Ratio Based Analysis and Robust Design of Mechanisms
,”
Precis. Eng.
,
34
(
4
), pp.
790
797
.
38.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2013
, “
Factorization of Rational Curves in the Study Quadric
,”
Mech. Mach. Theory
,
59
, pp.
142
152
.
39.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.
40.
Dai
,
J. S.
,
2006
, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
,
41
(
1
), pp.
41
52
.
41.
Gan
,
D.
,
Liao
,
Q.
,
Wei
,
S.
,
Dai
,
J. S.
, and
Qiao
,
S.
,
2008
, “
Dual Quaternion-Based Inverse Kinematics of the General Spatial 7R Mechanism
,”
Proc. Inst. Mech. Eng., Part C
,
22
(
8
), pp.
1593
1598
.
42.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
43.
Husty
,
M.
,
Birlescu
,
I.
,
Tucan
,
P.
,
Vaida
,
C.
, and
Pisla
,
D.
,
2019
, “
An Algebraic Parameterization Approach for Parallel Robots Analysis
,”
Mech. Mach. Theory
,
140
, pp.
245
257
.
44.
Liu
,
K.
,
Kong
,
X.
, and
Yu
,
J.
,
2019
, “
Operation Mode Analysis of Lower-Mobility Parallel Mechanisms Based on Dual Quaternions
,”
Mech. Mach. Theory
,
142
, p.
103577
.
45.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2015
, “
Four-Pose Synthesis of Angle-Symmetric 6R Linkages
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041006
.
46.
Gallet
,
M.
,
Koutschan
,
C.
,
Li
,
Z.
,
Regensburger
,
G.
,
Schicho
,
J.
, and
Villamizar
,
N.
,
2017
, “
Planar Linkages Following a Prescribed Motion
,”
Math. Comput.
,
86
(
303
), pp.
473
506
.
47.
Liu
,
K.
,
Yu
,
J.
, and
Kong
,
X.
,
2021
, “
Synthesis of Multi-mode Single-Loop Bennett-Based Mechanisms Using Factorization of Motion Polynomials
,”
Mech. Mach. Theory
,
155
, p.
104110
.
48.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2016
, “
The Rational Motion of Minimal Dual Quaternion Degree With Prescribed Trajectory
,”
Comput. Aided Geom. Des.
,
41
, pp.
1
9
.
49.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2018
, “
Kempe’s Universality Theorem for Rational Space Curves
,”
Found. Comput. Math.
,
18
(
2
), pp.
509
536
.
50.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2019
, “
Factorization of Motion Polynomials
,”
J. Symb. Comput.
,
74
, pp.
400
407
.
51.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2016
, “
Spatial Straight-Line Linkages by Factorization of Motion Polynomials
,”
ASME J. Mech. Robot.
,
8
(
2
), p.
021002
.
52.
Ge
,
Q. J.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Li
,
X.
,
2012
, “
A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), pp.
1587
1596
.
53.
Larochelle
,
P.
,
2015
, “
Synthesis of Planar Mechanisms for Pick and Place Tasks With Guiding Positions
,”
ASME J. Mech. Robot.
,
7
(
3
), p.
031009
.
54.
Zhao
,
P.
,
Li
,
X.
,
Zhu
,
L.
,
Zi
,
B.
, and
Ge
,
Q. J.
,
2016
, “
A Novel Motion Synthesis Approach With Expandable Solution Space for Planar Linkages Based on Kinematic-Mapping
,”
Mech. Mach. Theory
,
105
, pp.
164
175
.
55.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
56.
Thomas
,
F.
,
2014
, “
Approaching Dual Quaternions From Matrix Algebra
,”
IEEE Trans. Robot.
,
30
(
5
), pp.
1037
1048
.
57.
Husty
,
M. L.
,
Pfurner
,
M.
,
Schröcker
,
H. P.
, and
Brunnthaler
,
K.
,
2007
, “
Algebraic Methods in Mechanism Analysis and Synthesis
,”
Robotica
,
25
(
6
), pp.
661
675
.
58.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
, pp.
161
176
.
59.
Selig
,
J. M.
, and
Husty
,
M. L.
,
2011
, “
Half-Turns and Line Symmetric Motions
,”
Mech. Mach. Theory
,
46
(
2
), pp.
156
167
.
You do not currently have access to this content.