Abstract

Hybrid powertrains with planetary gearset (PG) have been widely used. However, there are few types of powertrains in use, and more powertrains have not been found. Based on the principle of organic chemistry, a design and screening method of multi-mode 2-PGs hybrid powertrain is proposed, which is divided into five stages. First, powertrains are expressed in the form of molecules. Second, powertrains split into the libraries of PGs and power sources. The power sources can be mutually identified to construct new library. Third, the mode switching rules are defined to screen power source group. Fourth, two libraries interact with each other to promote the generation of new molecules, namely, new powertrains. And the more modes, the greater the potential for performance. Powertrains are screened with mode richness theory firstly. Finally, taking the comprehensive evaluation of power performance and fuel economy as the optimal standard, powertrains are screened and evaluated twice. Through the method, hybrid powertrains with smooth mode switching, simpler structure, and optimal power and economy can be obtained.

References

1.
Benford
,
H. L.
, and
Leising
,
M. B.
,
1981
, “The Lever Analogy: A New Tool in Transmission Analysis,” SAE Technical Papers, SAE International.
2.
Deur
,
J.
,
Milutinović
,
M.
,
Ivanović
,
V.
, and
Eric Tseng
,
H.
,
2016
, “
Modeling of a Dry Dual Clutch Utilizing a Lever-Based Electromechanical Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
9
), p.
091012
.
3.
Gonzalez
,
J.
, and
Sueur
,
C.
,
2018
, “
Unknown Input Observer with Stability: A Structural Analysis Approach in Bond Graph
,”
Eur. J. Control
,
41
, pp.
25
43
.
4.
Deng
,
T.
,
Xu
,
H.
,
Wu
,
C.
,
Zhang
,
L.
, and
Gan
,
Z.
,
2020
, “
Topological Symmetry Identification of Kinematic Chains Based on Topological Index
,”
Mech. Mach. Theory
,
154
, p.
104099
.
5.
Pennestrì
,
E.
, and
Belfiore
,
N. P.
,
2015
, “
On Crossley’s Contribution to the Development of Graph Based Algorithms for the Analysis of Mechanisms and Gear Trains
,”
Mech. Mach. Theory
,
89
, pp.
92
106
.
6.
Sun
,
W.
,
Li
,
R.
,
Kong
,
J.
, and
Li
,
A.
,
2021
, “
A New Method for Isomorphism Identification of Planetary Gear Trains
,”
Mech. Sci.
,
12
(
1
), pp.
193
202
.
7.
Kim
,
H.
, and
Kum
,
D.
,
2016
, “
Comprehensive Design Methodology of Input- and Output-Split Hybrid Electric Vehicles: In Search of Optimal Configuration
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2912
2923
.
8.
Wang
,
W.
,
Song
,
R.
,
Guo
,
M.
, and
Liu
,
S.
,
2014
, “
Analysis on Compound-Split Configuration of Power-Split Hybrid Electric Vehicle
,”
Mech. Mach. Theory
,
78
, pp.
272
288
.
9.
Pei
,
H.
,
Hu
,
X.
,
Yang
,
Y.
,
Tang
,
X.
,
Hou
,
C.
, and
Cao
,
D.
,
2018
, “
Configuration Optimization for Improving Fuel Efficiency of Power Split Hybrid Powertrains With a Single Planetary Gear
,”
Appl. Energy
,
214
, pp.
103
116
.
10.
Liu
,
J.
, and
Peng
,
H.
,
2008
, “
Automated Modelling of Power-Split Hybrid Vehicles
,”
IFAC Proc
,
41
(
2
), pp.
4648
4653
.
11.
Liu
,
J.
, and
Peng
,
H.
,
2008
, “
Modeling and Control of a Power-Split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
.
12.
Liu
,
J.
, and
Peng
,
H.
,
2010
, “
A Systematic Design Approach for Two Planetary Gear Split Hybrid Vehicles
,”
Veh. Syst. Dyn.
,
48
(
11
), pp.
1395
1412
.
13.
Zhang
,
X.
,
Peng
,
H.
,
Sun
,
J.
, and
Li
,
S.
,
2014
, “
Automated Modeling and Mode Screening for Exhaustive Search of Double-Planetary-Gear Power Split Hybrid Powertrains
,”
ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
,
San Antonio, TX
,
Oct. 22–24
, ASME Paper No. DSCC2014-6028,
American Society of Mechanical Engineers
, pp.
1
8
.
14.
Zhang
,
X.
,
Eben Li
,
S.
,
Peng
,
H.
, and
Sun
,
J.
,
2015
, “
Efficient Exhaustive Search of Power-Split Hybrid Powertrains With Multiple Planetary Gears and Clutches
,”
AMSE J. Dyn. Syst. Meas. Control
,
137
(
12
), p.
121006
.
15.
Zhang
,
X.
,
Li
,
C. T.
,
Kum
,
D.
, and
Peng
,
H.
,
2012
, “
Prius + and Volt -: Configuration Analysis of Power-Split Hybrid Vehicles With a Single Planetary Gear
,”
IEEE Trans. Veh. Technol.
,
61
(
8
), pp.
3544
3552
.
16.
Zhang
,
X.
,
Li
,
S. E.
,
Peng
,
H.
, and
Sun
,
J.
,
2016
, “
Design of Multimode Power-Split Hybrid Vehicles—A Case Study on the Voltec Powertrain System
,”
IEEE Trans. Veh. Technol.
,
65
(
6
), pp.
4790
4801
.
17.
Zhuang
,
W.
,
Zhang
,
X.
,
Peng
,
H.
, and
Wang
,
L.
,
2016
, “
Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains
,”
Energies
,
9
(
6
), p.
411
.
18.
Zhuang
,
W.
,
Zhang
,
X.
,
Peng
,
H.
, and
Wang
,
L.
,
2016
, “
Rapid Configuration Design of Multiple-Planetary-Gear Power-Split Hybrid Powertrain via Mode Combination
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2924
2934
.
19.
Zhuang
,
W.
,
Zhang
,
X.
,
Ding
,
Y.
,
Wang
,
L.
, and
Hu
,
X.
,
2016
, “
Comparison of Multi-Mode Hybrid Powertrains with Multiple Planetary Gears
,”
Appl. Energy
,
178
, pp.
624
632
.
20.
Zhuang
,
W.
,
Zhang
,
X.
,
Zhao
,
D.
,
Peng
,
H.
, and
Wang
,
L.
,
2016
, “
Optimal Design of Three-Planetary-Gear Power-Split Hybrid Powertrains
,”
Int. J. Automotive. Technolo.
,
17
(
2
), pp.
299
309
.
21.
Yang
,
Y.
,
Pei
,
H.
,
Hu
,
X.
,
Liu
,
Y.
,
Hou
,
C.
, and
Cao
,
D.
,
2019
, “
Fuel Economy Optimization of Power Split Hybrid Vehicles: A Rapid Dynamic Programming Approach
,”
Energy
,
166
, pp.
929
938
.
22.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2013
, “
Design of Hybrid-Electric Vehicle Architectures Using Auto-Generation of Feasible Driving Modes
,”
Proceedings of the IDETC/CIE
,
Portland, OR
,
Aug. 4–7
, ASME Paper No. DETC2013-13043,
American Society of Mechanical Engineers
, pp.
1
9
.
23.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
AMSE J. Mech. Des.
,
138
(
8
), p.
081401
.
24.
Gu
,
J.
,
Zhao
,
Z.
,
Chen
,
Y.
,
He
,
L.
, and
Zhan
,
X.
,
2020
, “
Integrated Optimal Design of Configuration and Parameter of Multimode Hybrid Powertrain System With Two Planetary Gears
,”
Mech. Mach. Theory
,
143
, p.
103630
.
25.
Du
,
M.
, and
Yang
,
L.
,
2020
, “
A Basis for the Computer-Aided Design of the Topological Structure of Planetary Gear Trains
,”
Mech. Mach. Theory
,
145
, p.
103690
.
26.
Barhoumi
,
T.
,
Kim
,
H.
, and
Kum
,
D.
,
2018
, “
Automatic Generation of Design Space Conversion Maps and Its Application for the Design of Compound Split Hybrid Powertrains
,”
ASME J. Mech. Des
,
140
(
6
), p.
063401
.
27.
Barhoumi
,
T.
,
Kim
,
H.
, and
Kum
,
D.
,
2017
, “Compound Lever Based Optimal Configuration Selection of Compound-Split Hybrid Vehicles,” SAE Technical Papers, SAE International.
28.
Barhoumi
,
T.
, and
Kum
,
D.
,
2017
, “
Automatic Enumeration of Feasible Kinematic Diagrams for Split Hybrid Configurations With a Single Planetary Gear
,”
ASME J. Mech. Des
,
139
(
8
), p.
083301
.
29.
Ho
,
T.-T.
, and
Hwang
,
S.-J.
,
2020
, “
Configuration Synthesis of Novel Hybrid Transmission Systems Using a Combination of a Ravigneaux Gear Train and a Simple Planetary Gear Train
,”
Energies
,
13
(
9
), p.
2333
.
30.
Gao
,
M.-F.
, and
Hu
,
J.-B.
,
2018
, “
Kinematic Analysis of Planetary Gear Trains Based on Topology
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012302
.
31.
Shanmukhasundaram
,
V. R.
,
Rao
,
Y. V. D.
, and
Regalla
,
S. P.
,
2019
, “
Enumeration of Displacement Graphs of Epicyclic Gear Train From a Given Rotation Graph Using Concept of Building of Kinematic Units
,”
Mech. Mach. Theory
,
134
, pp.
393
424
.
32.
Burress
,
T. A.
,
Campbell
,
S. L.
,
Coomer
,
C.
,
Ayers
,
C. W.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H.-T.
,
2011
,
Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System
,
Oak Ridge
,
TN
.
33.
Clayden
,
J.
,
Greeves
,
N.
,
Warren
,
S.
, and
Wothers
,
P.
,
2001
,
Organic Chemistry
,
Oxford University Press
,
New York
.
34.
Berger
,
O.
,
Gavara
,
L.
, and
Montchamp
,
J.-L.
,
2012
, “
ChemInform Abstract: Chemistry of the Versatile (Hydroxymethyl)Phosphinyl P(O)CH2 OH Functional Group
,”
ChemInform
,
14
(
13
), pp.
3404
3407
.
35.
Ghannam
,
I. A. Y.
,
Abd El-Meguid
,
E. A.
,
Ali
,
I. H.
,
Sheir
,
D. H.
, and
El Kerdawy
,
A. M.
,
2019
, “
Novel 2-Arylbenzothiazole DNA Gyrase Inhibitors: Synthesis, Antimicrobial Evaluation, QSAR and Molecular Docking Studies
,”
Bioorg. Chem.
,
93
, p.
103373
.
36.
Gensch
,
T.
,
Teders
,
M.
, and
Glorius
,
F.
,
2017
, “
Approach to Comparing the Functional Group Tolerance of Reactions
,”
J. Org. Chem.
,
82
(
17
), pp.
9154
9159
.
37.
Savin
,
Y. S.
, and
Bartenev
,
G. M.
,
1986
, “
Fracture of Polymers Containing Weak Chemical Bonds
,”
Polym. Sci. U.S.S.R.
,
28
(
11
), pp.
2653
2660
.
38.
Ehsani
,
M.
,
Gao
,
Y.
, and
Miller
,
J. M.
,
2007
, “
Hybrid Electric Vehicles: Architecture and Motor Drives
,”
Proc. IEEE
,
95
(
4
), pp.
719
728
.
39.
Li
,
C. T.
,
Zhang
,
X.
, and
Peng
,
H.
,
2012
, “
Design of Power-Split Hybrid Vehicles with a Single Planetary Gear
,”
DSCC-MOVIC
,
Fort Lauder, FL
,
Oct. 17–19
,
American Society of Mechanical Engineers
, ASME-JSME Paper No. DSCC2012-MOVIC2012-8818, pp.
1
9
.
40.
Dagci
,
O. H.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2015
, “
Power-Split Hybrid Electric Powertrain Design With Two Planetary Gearsets for Light-Duty Truck Applications
,”
IFAC-PapersOnLine
,
48
(
15
), pp.
8
15
.
41.
Peng
,
Z.-X.
,
Hu
,
J.-B.
,
Xie
,
T.-L.
, and
Liu
,
C.-W.
,
2015
, “
Design of Multiple Operating Degrees-of-Freedom Planetary Gear Trains With Variable Structure
,”
ASME J. Mech. Des.
,
137
(
9
), p.
093301
.
42.
Pugh
,
J. T.
,
1987
, “
An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains
,”
ASME J. Mech. Trans. Autom. Des.
,
109
(
3
), pp.
329
336
.
43.
Deng
,
T.
,
Tang
,
P.
,
Su
,
Z.
, and
Luo
,
Y.
,
2020
, “
Systematic Design and Optimization Method of Multimode Hybrid Electric Vehicles Based on Equivalent Tree Graph
,”
IEEE Trans. Power Electron.
,
35
(
12
), pp.
13465
13474
.
44.
Dagci
,
O. H.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2018
, “
Hybrid Electric Powertrain Design Methodology With Planetary Gear Sets for Performance and Fuel Economy
,”
IEEE Access
,
6
, pp.
9585
9602
.
45.
Pennestrè
,
E.
, and
Freudenstein
,
F.
,
1993
, “
A Systematic Approach to Power-Flow and Static-Force Analysis in Epicyclic Spur-Gear Trains
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
639
644
.
46.
Deng
,
T.
, and
Luo
,
Y.
,
2020
, “
Construction of Hybrid Electric Vehicle A-ECMS Based on Cloud Model Recognition of Driving Intention
,”
J. Automot. Saf. Energy
,
11
(
3
), pp.
305
313
(in Chinese).
You do not currently have access to this content.