Abstract

The design of XY compliant parallel manipulators (CPMs) remains challenging considering the tradeoff between mirror-symmetry for better constrained undesired rotations and a small footprint, although a significant number of XY CPMs have been reported in extensive applications. This paper presents a new XY CPM using mirror-symmetry without increasing its footprint, mainly aiming to reduce the undesired parasitic rotations of input and output motion stages. The concept of mirror-symmetry is deployed to tackle the parasitic rotations, with the help of using a multilayer compact XY CPM design method. A nonlinear and analytical model of the proposed XY CPM is derived using free body diagrams and the beam constraint model (BCM) to accurately analyze its performance characteristics over a large range of motion. The designed XY CPM is then verified by the nonlinear finite element analysis (FEA) method. Finally, the proposed multilayer design is fabricated using two pieces of aluminum plate and it is mounted in a measurement system to experimentally validate several performance characteristics. The analytical, FEA, and/or experimental results show that the proposed design can sufficiently constrain undesired motions including parasitic rotation of input and output stages, cross-axis coupling error, and actuator isolation index. Compared with exiting designs, the proposed design also shows its merits in large motion range and out-of-plane stiffness.

References

1.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
2.
Hiemstra
,
D. B.
,
Parmar
,
G.
, and
Awtar
,
S.
,
2014
, “
Performance Tradeoffs Posed by Moving Magnet Actuators in Flexure-Based Nanopositioning
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
201
212
.
3.
Liu
,
X.
,
Tong
,
J.
, and
Sun
,
Y.
,
2007
, “
Millimeter-Sized Nanomanipulator With Sub-Nanometer Positioning Resolution and Large Force Output
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1742
1750
.
4.
Tian
,
Y.
,
Ma
,
Y.
,
Wang
,
F.
,
Lu
,
K.
, and
Zhang
,
D.
,
2020
, “
A Novel XYZ Micro/Nano Positioner With an Amplifier Based on L-Shape Levers and Half-Bridge Structure
,”
Sens. Actuators, A
,
302
, p.
111777
.
5.
Teo
,
T. J.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2014
, “
A Large Deflection and High Payload Flexure-Based Parallel Manipulator for UV Nanoimprint Lithography: Part I. Modeling and Analyses
,”
Precis. Eng.
,
38
(
4
), pp.
861
871
.
6.
Lee
,
J.
,
Choi
,
K.
, and
Kim
,
G.
,
2006
, “
Design and Analysis of the Single-Step Nanoimprinting Lithography Equipment for Sub-100 nm Linewidth
,”
Curr. Appl Phys.
,
6
(
6
), pp.
1007
1011
.
7.
Schmitt
,
P.
, and
Hoffmann
,
M.
,
2020
, “
Engineering a Compliant Mechanical Amplifier for MEMS Sensor Applications
,”
J. Microelectromech. Syst.
,
29
(
2
), pp.
214
227
.
8.
Seidemann
,
V.
,
Bütefisch
,
S.
, and
Büttgenbach
,
S.
,
2002
, “
Fabrication and Investigation of In-Plane Compliant SU8 Structures for MEMS and Their Application to Micro Valves and Micro Grippers
,”
Sens. Actuators, A
,
97–98
, pp.
457
461
.
9.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Processing
,
29
(
1
), pp.
7
15
.
10.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.
11.
Hao
,
G.
,
2014
, “
A 2-Legged XY Parallel Flexure Motion Stage With Minimised Parasitic Rotation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
228
(
17
), pp.
3156
3169
.
12.
Pinskier
,
J.
, and
Shirinzadeh
,
B.
,
2019
, “
Topology Optimization of Leaf Flexures to Maximize In-Plane to Out-of-Plane Compliance Ratio
,”
Precis. Eng.
,
55
, pp.
397
407
.
13.
Polit
,
S.
, and
Dong
,
J.
,
2011
, “
Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nanomanufacturing
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
724
733
.
14.
Awtar
,
S.
,
2003
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
15.
Du
,
Y.
,
Li
,
T.
,
Jiang
,
Y.
, and
Wang
,
H.
,
2016
, “
Design and Analysis of a 2-Degree-of-Freedom Flexure-Based Micro-Motion Stage
,”
Adv. Mech. Eng.
,
8
(
3
), pp.
1
13
.
16.
Herpe
,
X.
,
Walker
,
R.
,
Dunnigan
,
M.
, and
Kong
,
X.
,
2018
, “
On a Simplified Nonlinear Analytical Model for the Characterisation and Design Optimisation of a Compliant XY Micro-Motion Stage
,”
Rob. Comput. Integr. Manuf.
,
49
, pp.
66
76
.
17.
Hao
,
G.
, and
Yu
,
J.
,
2016
, “
Design, Modelling and Analysis of a Completely-Decoupled XY Compliant Parallel Manipulator
,”
Mech. Mach. Theory
,
102
, pp.
179
195
.
18.
Xu
,
Q.
,
2014
, “
Design and Development of a Compact Flexure-Based XY Precision Positioning System With Centimeter Range
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
893
903
.
19.
Zhang
,
H.
,
Wu
,
Z.
, and
Xu
,
Q.
,
2020
, “
Design of a New XY Flexure Micropositioning Stage With a Large Hollow Platform
,”
Actuators
,
9
(
3
), p.
65
.
20.
Roy
,
N. K.
, and
Cullinan
,
M. A.
,
2018
, “
Design and Characterization of a Two-Axis, Flexure-Based Nanopositioning Stage With 50 mm Travel and Reduced Higher Order Modes
,”
Precis. Eng.
,
53
, pp.
236
247
.
21.
Smith
,
S. T.
,
2003
,
Foundations of Ultra-Precision Mechanism Design
, Vol.
2
,
CRC Press
,
New York
.
22.
Hao
,
G.
, and
Hand
,
R. B.
,
2016
, “
Design and Static Testing of a Compact Distributed-Compliance Gripper Based on Flexure Motion
,”
Arch. Civ. Mech. Eng.
,
16
(
4
), pp.
708
716
.
23.
Panas
,
R. M.
, and
Hopkins
,
J. B.
,
2015
, “
Eliminating Underconstraint in Double Parallelogram Flexure Mechanisms
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092301
.
24.
Hao
,
G.
,
He
,
X.
, and
Awtar
,
S.
,
2019
, “
Design and Analytical Model of a Compact Flexure Mechanism for Translational Motion
,”
Mech. Mach. Theory
,
142
, p.
103593
.
25.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
26.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2006
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.
27.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Design of 3-Legged XYZ Compliant Parallel Manipulators With Minimised Parasitic Rotations
,”
Robotica
,
33
(
4
), pp.
787
806
.
28.
Zhu
,
J.
,
Hao
,
G.
,
Li
,
S.
,
Yu
,
S.
, and
Kong
,
X.
,
2021
, “
A Mirror-Symmetrical XY Compliant Parallel Manipulator With Improved Performances Without Increasing the Footprint
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
, Paper No. DETC2021-69032.
29.
Lai
,
L. J.
,
Gu
,
G. Y.
, and
Zhu
,
L. M.
,
2012
, “
Design and Control of a Decoupled Two Degree of Freedom Translational Parallel Micro-Positioning Stage
,”
Rev. Sci. Instrum.
,
83
(
4
), p.
045105
.
30.
Liu
,
Z.
,
Zhang
,
Z.
, and
Yan
,
P.
,
2018
, “
A Self-Adjusting Stiffness Center Design for Large Stroke Compliant XY Nanomanipulators
,”
Mech. Sci.
,
9
(
1
), pp.
41
50
.
31.
Lee
,
H.
,
Woo
,
S.
,
Park
,
J.
,
Jeong
,
J.
,
Kim
,
M.
,
Ryu
,
J.
,
Gweon
,
D.
, and
Choi
,
Y.
,
2017
, “
Compact Compliant Parallel XY Nano-Positioning Stage With High Dynamic Performance, Small Crosstalk, and Small Yaw Motion
,”
Microsyst. Technol.
,
24
(
6
), pp.
2653
2662
.
You do not currently have access to this content.