Abstract

G-Lattices (proposed by Armanfar and Gunpinar) are a group of novel periodic and strut-based lattice structures for additive manufacturing. It has been demonstrated that these structures have superior mechanical properties under compression compared to conventional lattice structures. This paper introduces an extension of G-Lattices (i.e., reinforced G-Lattices) that also have better mechanical performance under inclined (compression) loading conditions. For different inclined loads, separate reinforced G-Lattices are first optimized, and a G-Lattice library is formed. For a part under loading, displacement vectors in each unit cell (cubic domains within the inner region of the part) are then extracted. Based on these vectors, (pre-optimized) reinforced G-Lattices are selected from the G-Lattice library and utilized (as infills) in the unit cells. This process is called G-Puzzling. As a proof of concept, parts under three different inclined loading conditions are infilled using reinforced G-Lattices and investigated based on stiffness-over-volume ratios. According to these experiments, the resulting parts, on average, exhibit more than 30% better mechanical performance compared to FBCCZ (a conventional lattice structure).

References

1.
Rasiya
,
G.
,
Shukla
,
A.
, and
Saran
,
K.
,
2021
, “
Additive Manufacturing—A Review
,”
Mater. Today: Proc.
,
47
(
19
), pp.
6896
6901
.
2.
Seharing
,
A.
,
Azman
,
A. H.
, and
Abdullah
,
S.
,
2020
, “
A Review on Integration of Lightweight Gradient Lattice Structures in Additive Manufacturing Parts
,”
Adv. Mech. Eng.
,
12
, p.
168781402091695
.
3.
Armanfar
,
A.
, and
Gunpinar
,
E.
,
2023
, “
G-Lattices: A Novel Lattice Structure and Its Generative Synthesis Under Additive Manufacturing Constraints
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011702
.
4.
Mahshid
,
R.
,
Hansen
,
H. N.
, and
Højbjerre
,
K. L.
,
2016
, “
Strength Analysis and Modeling of Cellular Lattice Structures Manufactured Using Selective Laser Melting for Tooling Applications
,”
Mater. Des.
,
104
, pp.
276
283
.
5.
Monteiro
,
J.
,
Sardinha
,
M.
,
Alves
,
F.
,
Ribeiro
,
A.
,
Reis
,
L.
,
Deus
,
A.
,
Leite
,
M.
, and
Vaz
,
M. F.
,
2021
, “
Evaluation of the Effect of Core Lattice Topology on the Properties of Sandwich Panels Produced by Additive Manufacturing
,”
Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
,
235
, pp.
1312
1324
.
6.
Tao
,
W.
, and
Leu
,
M.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,”
International Symposium on Flexible Automation (ISFA)
,
Cleveland, OH
,
Aug. 1–3
, pp.
325
332
.
7.
Wang
,
H.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2005
, “
A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
421
427
.
8.
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y.
,
2019
, “
A Hybrid Geometric Modeling Method for Lattice Structures Fabricated by Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
102
, pp.
4011
4030
.
9.
Vongbunyong
,
S.
, and
Kara
,
S.
,
2017
, “
Rapid Generation of Uniform Cellular Structure by Using Prefabricated Unit Cells
,”
Int. J. Comput. Integr. Manuf.
,
30
(
8
), pp.
792
804
.
10.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
.
11.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graph. Model.
,
73
(
5
), pp.
165
181
.
12.
Aremu
,
A.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R.
,
Wildman
,
R.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
13.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W.
,
2013
, “
Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.
14.
Abdulhadi
,
H.
, and
Mian
,
A.
,
2019
, “
Effect of Strut Length and Orientation on Elastic Mechanical Response of Modified Body-Centered Cubic Lattice Structures
,”
Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl.
,
233
, p.
146442071984108
.
15.
Pan
,
C.
,
Han
,
Y.
, and
Lu
,
J.
,
2020
, “
Design and Optimization of Lattice Structures: A Review
,”
Appl. Sci.
,
10
, p.
6374
.
16.
Maskery
,
I.
,
Hussey
,
A.
,
Panesar
,
A.
,
Aremu
,
A.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
An Investigation Into Reinforced and Functionally Graded Lattice Structures
,”
J. Cell. Plast.
,
53
, pp.
151
165
.
17.
Alghamdi
,
A.
,
Downing
,
D.
,
Tino
,
R.
,
Almalki
,
A.
,
Maconachie
,
T.
,
Lozanovski
,
B.
,
Brandt
,
M.
,
Qian
,
M.
, and
Leary
,
M.
,
2021
, “
Buckling Phenomena in AM Lattice Strut Elements: A Design Tool Applied to Ti-6Al-4V LB-PBF
,”
Mater. Des.
,
208
, p.
109892
.
18.
Lebaal
,
N.
,
Zhang
,
Y.
,
Demoly
,
F.
,
Roth
,
S.
,
Gomes
,
S.
, and
Bernard
,
A.
,
2019
, “
Optimised Lattice Structure Configuration for Additive Manufacturing
,”
CIRP Ann.
,
68
(
1
), pp.
117
120
.
19.
Zhu
,
S.
,
Ma
,
L.
,
Wang
,
B.
,
Hu
,
J.
, and
Zhou
,
Z.
,
2018
, “
Lattice Materials Composed by Curved Struts Exhibit Adjustable Macroscopic Stress-Strain Curves
,”
Mater. Today Commun.
,
14
, pp.
273
281
.
20.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson’s Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
, p.
024012
.
21.
Cuan-Urquizo
,
E.
,
Martínez
,
M.
,
Crespo
,
S.
,
Gómez-Espinosa
,
A.
,
Olvera-Silva
,
O.
, and
Roman-Flores
,
A.
,
2019
, “
Additive Manufacturing and Mechanical Properties of Lattice-Curved Structures
,”
Rapid Prototyp. J.
,
25
, pp.
895
903
.
22.
Zhang
,
J. Z.
,
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2020
, “
Stress-Constrained Design of Functionally Graded Lattice Structures With Spline-Based Dimensionality Reduction
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091702
.
23.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
24.
Syam
,
W. P.
,
Jianwei
,
W.
,
Zhao
,
B.
,
Maskery
,
I.
,
Elmadih
,
W.
, and
Leach
,
R.
,
2018
, “
Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,”
Precis. Eng.
,
52
, pp.
494
506
.
25.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2021
, “
Lattice Structure Optimization With Orientation-Dependent Material Properties
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091708
.
26.
Zhang
,
H.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2018
, “
Bi-Material Microstructural Design of Chiral Auxetic Metamaterials Using Topology Optimization
,”
Composite Struct.
,
195
, pp.
232
248
.
27.
Ćurković
,
P.
,
2021
, “
Optimization of Generatively Encoded Multi-material Lattice Structures for Desired Deformation Behavior
,”
Symmetry
,
13
(
2
), p.
293
.
28.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2015
, “
Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
.
29.
Leary
,
M.
,
Mazur
,
M.
,
Williams
,
H.
,
Yang
,
E.
,
Alghamdi
,
A.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Shidid
,
D.
, et al.,
2018
, “
Inconel 625 Lattice Structures Manufactured by Selective Laser Melting (SLM): Mechanical Properties, Deformation and Failure Modes
,”
Mater. Des.
,
157
, pp.
179
199
.
30.
Rakić
,
T.
,
Kasagić-Vujanović
,
I.
,
Jovanović
,
M.
,
Jančić-Stojanović
,
B.
, and
Ivanović
,
D.
,
2014
, “
Comparison of Full Factorial Design, Central Composite Design, and Box-Behnken Design in Chromatographic Method Development for the Determination of Fluconazole and Its Impurities
,”
Anal. Lett.
,
47
(
8
), pp.
1334
1347
.
31.
Soltani-Tehrani
,
A.
,
Lee
,
S.
,
Sereshk
,
M.
, and
Shamsaei
,
N.
,
2020
, “
Effects of Unit Cell Size on the Mechanical Performance of Additive Manufactured Lattice Structures
,”
2019 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
.
32.
Salonitis
,
K.
,
Chantzis
,
D.
, and
Kappatos
,
V.
,
2017
, “
A Hybrid Finite Element Analysis and Evolutionary Computation Method for the Design of Lightweight Lattice Components With Optimized Strut Diameter
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9-12
), pp.
2689
2701
.
33.
Wang
,
Y.
,
Jing
,
S.
,
Liu
,
Y.
,
Song
,
G.
,
Qie
,
L.
, and
Xing
,
H.
,
2018
, “
Generative Design Method for Lattice Structure With Hollow Struts of Variable Wall Thickness
,”
Adv. Mech. Eng.
,
10
(
3
), p.
1687814017752482
.
34.
Gunpinar
,
E.
, and
Cam
,
S.
,
2022
, “
4 and 5-Axis Additive Manufacturing of Parts Represented Using Free-Form 3D Curves
,”
Graph. Model.
,
120
, p.
101137
.
35.
Gunpinar
,
E.
,
2021
, “
Curvature and Feature-Aware Print-Paths From Hexahedral Meshes for Additive Manufacturing
,”
Comput.-Aided Des.
,
141
, p.
103101
.
36.
Gunpinar
,
E.
, and
Armanfar
,
A.
,
2022
, “
Helical5am: Five-Axis Parametrized Helical Additive Manufacturing
,”
J. Mater. Process. Technol.
,
304
, p.
117565
.
37.
Cam
,
S.
, and
Gunpinar
,
E.
,
2023
, “
Fluid Flow-Inspired Curvature-Aware Print-Paths From Hexahedral Meshes for Additive Manufacturing
,”
Comput.-Aided Des.
,
159
, p.
103500
.
You do not currently have access to this content.