Abstract

A shape and generalized topology optimization method based on the level set-based density method is proposed to design the curved grid stiffeners. The overall layout of the stiffeners is described by combining many single stiffeners, and each single stiffener is described by a level set function parameterized by using the compactly supported radial basis functions (CS-RBFs). The curvilinear path of each stiffener is described by the zero iso-contour of each level set function, and the width of each stiffener is described by applying an interval projection to each level set function. The combination operation that is similar to the Boolean operation “union” is achieved by using the p-norm method. The expansion coefficients of CS-RBFs are taken as part of the design variables of the optimization, and they are responsible for changing the shape of curved stiffeners. A topology design variable is assigned to each single stiffener, and it is responsible for changing the existence of single stiffeners. The proposed method is validated through several numerical examples, and the results demonstrate that the shape and topology of stiffeners can be effectively changed during the optimization.

References

1.
Mulani
,
S. B.
,
Locatelli
,
D.
, and
Kapania
,
R. K.
,
2011
, “
Grid-Stiffened Panel Optimization Using Curvilinear Stiffeners
,”
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Denver, CO
,
Apr. 4
, p.
1895
.
2.
Totaro
,
G.
, and
De Nicola
,
F.
,
2012
, “
Recent Advance on Design and Manufacturing of Composite Anisogrid Structures for Space Launchers
,”
Acta Astronautica
,
81
(
2
), pp.
570
577
.
3.
Mulani
,
S. B.
,
Slemp
,
W. C.
, and
Kapania
,
R. K.
,
2013
, “
EBF3PanelOpt: An Optimization Framework for Curvilinear Blade-Stiffened Panels
,”
Thin-Walled Struct.
,
63
, pp.
13
26
.
4.
Huang
,
L.
,
Sheikh
,
A. H.
,
Ng
,
C.-T.
, and
Griffith
,
M. C.
,
2015
, “
An Efficient Finite Element Model for Buckling Analysis of Grid Stiffened Laminated Composite Plates
,”
Composite Struct.
,
122
, pp.
41
50
.
5.
Hao
,
P.
,
Wang
,
B.
,
Tian
,
K.
,
Li
,
G.
,
Du
,
K.
, and
Niu
,
F.
,
2016
, “
Efficient Optimization of Cylindrical Stiffened Shells With Reinforced Cutouts by Curvilinear Stiffeners
,”
AIAA J.
,
54
(
4
), pp.
1350
1363
.
6.
Zhang
,
S.
, and
Norato
,
J. A.
,
2017
, “
Optimal Design of Panel Reinforcements With Ribs Made of Plates
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081403
.
7.
Wang
,
D.
,
Abdalla
,
M. M.
, and
Zhang
,
W. H.
,
2017
, “
Buckling Optimization Design of Curved Stiffeners for Grid-Stiffened Composite Structures
,”
Compos. Struct.
,
159
, pp.
656
666
.
8.
Zhao
,
W.
, and
Kapania
,
R. K.
,
2016
, “
Buckling Analysis of Unitized Curvilinearly Stiffened Composite Panels
,”
Compos. Struct.
,
135
, pp.
365
382
.
9.
Inoue
,
K.
,
Yamanaka
,
M.
, and
Kihara
,
M.
,
2002
, “
Optimum Stiffener Layout for the Reduction of Vibration and Noise of Gearbox Housing
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
518
523
.
10.
Bai
,
J.
,
Zhao
,
Y.
,
Meng
,
G.
, and
Zuo
,
W.
,
2021
, “
Bridging Topological Results and Thin-Walled Frame Structures Considering Manufacturability
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091706
.
11.
Wei
,
P.
,
Ma
,
H. T.
, and
Wang
,
M. Y.
,
2014
, “
The Stiffness Spreading Method for Layout Optimization of Truss Structures
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
667
682
.
12.
Cao
,
M.
,
Ma
,
H. T.
, and
Wei
,
P.
,
2018
, “
A Modified Stiffness Spreading Method for Layout Optimization of Truss Structures
,”
Acta Mech. Sinica
,
34
(
6
), pp.
1072
1083
.
13.
Wang
,
D.
,
Abdalla
,
M. M.
, and
Zhang
,
W. H.
,
2018
, “
Sensitivity Analysis for Optimization Design of Non-Uniform Curved Grid-Stiffened Composite (NCGC) Structures
,”
Compos. Struct.
,
193
, pp.
224
236
.
14.
Zhang
,
W.
,
Liu
,
Y.
,
Du
,
Z.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Component Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111404
.
15.
Cui
,
J. C.
,
Su
,
Z. C.
,
Zhang
,
W. H.
, and
Wang
,
D.
,
2022
, “
Buckling Optimization of Non-Uniform Curved Grid-Stiffened Composite Structures (NCGCs) With a Cutout Using Conservativeness-Relaxed Globally Convergent Method of Moving Asymptotes
,”
Compos. Struct.
,
280
, p.
114842
.
16.
Wang
,
D.
,
Abdalla
,
M. M.
,
Wang
,
Z. P.
, and
Su
,
Z. C.
,
2019
, “
Streamline Stiffener Path Optimization (SSPO) for Embedded Stiffener Layout Design of Non-Uniform Curved Grid-Stiffened Composite (NCGC) Structures
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
1021
1050
.
17.
Savine
,
F.
,
Irisarri
,
F.-X.
,
Julien
,
C.
,
Vincenti
,
A.
, and
Guerin
,
Y.
,
2021
, “
A Component-Based Method for the Optimization of Stiffener Layout on Large Cylindrical Rib-Stiffened Shell Structures
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
1843
1861
.
18.
Wang
,
Y.
,
Zhang
,
H.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2022
, “
Design of a Stiffened Space Membrane Structure Using Explicit Topology Optimization
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121701
.
19.
Ma
,
X. T.
,
Wang
,
F. Y.
,
Niels
,
A.
,
Tian
,
K.
,
Hao
,
P.
, and
Wang
,
B.
,
2021
, “
Generative Design of Stiffened Plates Based on Homogenization Method
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
3951
3969
.
20.
Yang
,
K.
,
Tian
,
Y.
,
Shi
,
T.
, and
Xia
,
Q.
,
2022
, “
A Level Set Based Density Method for Optimizing Structures With Curved Grid Stiffeners
,”
Computer-Aided Design
,
153
, p.
103407
.
21.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
22.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
, pp.
250
254
.
23.
Rozvany
,
G. I. N.
,
2001
, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
90
108
.
24.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
25.
Wang
,
F. W.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
6
), pp.
767
784
.
26.
Osher
,
S.
, and
Santosa
,
F.
,
2001
, “
Level-Set Methods for Optimization Problems Involving Geometry and Constraints: Frequencies of a Two-Density Inhomogeneous Drum
,”
J. Comput. Phys.
,
171
(
1
), pp.
272
288
.
27.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
28.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1-2
), pp.
227
246
.
29.
Wei
,
P.
,
Yang
,
Y.
,
Chen
,
S.
, and
Wang
,
M. Y.
,
2021
, “
A Study on Basis Functions of the Parameterized Level Set Method for Topology Optimization of Continuums
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041701
.
30.
Deng
,
H.
, and
To
,
A. C.
,
2021
, “
A Parametric Level Set Method for Topology Optimization Based on Deep Neural Network(DNN)
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091702
.
31.
Liu
,
D. C.
,
Wang
,
Y.
,
Su
,
Z. J.
,
Hao
,
P.
,
Liu
,
X. X.
,
Wang
,
B.
, and
Li
,
G.
,
2022
, “
A New Layout Optimization Method for Stiffened Panels Based on Ground Stiffener Structure (GSS) and Thickness Penalty
,”
Thin-Walled Struct.
,
176
, p.
109309
.
32.
Jiang
,
X. D.
,
Liu
,
C.
,
Du
,
Z. L.
,
Huo
,
W. D.
,
Zhang
,
X. Y.
,
Liu
,
F.
, and
Guo
,
X.
,
2022
, “
A Unified Framework for Explicit Layout/topology Optimization of Thin-Walled Structures Based on Moving Morphable Components (MMC) Method and Adaptive Ground Structure Approach
,”
Comput. Methods Appl. Mech. Eng.
,
396
, p.
115047
.
33.
Hughes
,
T.
, and
Tezduyar
,
T.
,
1981
, “
Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element
,”
ASME J. Appl. Mech.
,
48
(
3
), pp.
587
596
.
34.
Ma
,
H.
,
Gao
,
X.-L.
, and
Reddy
,
J.
,
2011
, “
A Non-Classical Mindlin Plate Model Based on a Modified Couple Stress Theory
,”
Acta Mech.
,
220
(
1–4
), pp.
217
235
.
35.
Batista
,
M.
,
2010
, “
An Elementary Derivation of Basic Equations of the Reissner and Mindlin Plate Theories
,”
Eng. Struct.
,
32
(
3
), pp.
906
909
.
36.
Liu
,
H.
,
Chen
,
L.
,
Shi
,
T.
, and
Xia
,
Q.
,
2022
, “
M-Vcut Level Set Method for the Layout and Shape Optimization of Stiffeners in Plate
,”
Composite Struct.
,
293
, p.
115614
.
37.
Smith
,
H.
, and
Norato
,
J. A.
,
2020
, “
A Matlab Code for Topology Optimization Using the Geometry Projection Method
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1579
1594
.
38.
Zhang
,
W. H.
,
Zhou
,
Y.
, and
Zhu
,
J. H.
,
2017
, “
A Comprehensive Study of Feature Definitions With Solids and Voids for Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
289
313
.
39.
Jiu
,
L. P.
,
Zhang
,
W. H.
,
Meng
,
L.
,
Zhou
,
Y.
, and
Chen
,
L.
,
2020
, “
A CAD-Oriented Structural Topology Optimization Method
,”
Computers Struct.
,
239
, p.
106324
.
40.
Zhou
,
Y.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
, and
Xu
,
Z.
,
2016
, “
Feature-Driven Topology Optimization Method With Signed Distance Function
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
1
32
.
41.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
42.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2015
, “
Topology Optimization of Coated Structures and Material Interface Problems
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
524
541
.
43.
Wu
,
J.
,
Clausen
,
A.
, and
Sigmund
,
O.
,
2017
, “
Minimum Compliance Topology Optimization of Shell–Infill Composites for Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
358
375
.
44.
Fu
,
J.
,
Li
,
H.
,
Xiao
,
M.
,
Gao
,
L.
, and
Sheng
,
C.
,
2019
, “
Topology Optimization of Shell-Infill Structures Using a Distance Regularized Parametric Level-Set Method
,”
Struct. Multidiscip. Optim.
,
59
(
1
), pp.
249
262
.
45.
Wang
,
Y. G.
, and
Kang
,
Z.
,
2018
, “
A Level Set Method for Shape and Topology Optimization of Coated Structures
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
553
574
.
46.
Jiang
,
L.
,
Guo
,
Y.
,
Chen
,
S. K.
,
Wei
,
P.
,
Lei
,
N.
, and
Gu
,
X. F.
,
2019
, “
Concurrent Optimization of Structural Topology and Infill Properties With a CBF-Based Level Set Method
,”
Front. Mech. Eng.
,
14
(
2
), pp.
171
189
.
47.
Wang
,
S. Y.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
.
48.
Luo
,
Z.
,
Tong
,
L. Y.
,
Wang
,
M. Y.
, and
Wang
,
S. Y.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.
49.
Wang
,
Y. Q.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1570
1586
.
50.
Wei
,
P.
,
Li
,
Z. Y.
,
Li
,
X. P.
, and
Wang
,
M. Y.
,
2018
, “
An 88-line Matlab Code for the Parameterized Level Set Method Based Topology Optimization Using Radial Basis Functions
,”
Struct. Multidiscip. Optim.
,
58
(
2
), pp.
831
849
.
51.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Qin
,
Q. H.
,
2018
, “
Topology Optimization for Concurrent Design of Structures With Multi-Patch Microstructures by Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
536
561
.
52.
Buhmann
,
M. D.
,
2004
,
Radial Basis Functions: Theory and Implementations
(Vol.
12
of
Cambridge Monographs on Applied and Computational Mathematics
),
Cambridge University Press
,
Cambridge, UK
.
53.
Borrvall
,
T.
, and
Petersson
,
J.
,
2001
, “
Topology Optimization Using Regularized Intermediate Mass Density
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4911
4928
.
54.
Xia
,
Q.
, and
Wang
,
M. Y.
,
2008
, “
Topology Optimization of Thermoelastic Structures Using Level Set Method
,”
Comput. Mech.
,
42
(
6
), pp.
837
857
.
55.
Jiang
,
L.
, and
Chen
,
S. K.
,
2017
, “
Parametric Structural Shape & Topology Optimization With a Variational Distance-Regularized Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
316
336
.
56.
Fernandez
,
F.
,
Compel
,
W. S.
,
Lewicki
,
J. P.
, and
Tortorelli
,
D. A.
,
2019
, “
Optimal Design of Fiber Reinforced Composite Structures and Their Direct Ink Write Fabrication
,”
Comput. Methods Appl. Mech. Eng.
,
353
, pp.
277
307
.
57.
Tian
,
Y.
,
Shi
,
T. L.
, and
Xia
,
Q.
,
2022
, “
A Parametric Level Set Method for the Optimization of Composite Structures With Curvilinear Fibers
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114236
.
58.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
59.
Svanberg
,
K.
,
2007
, “MMA and GCMMA—Two Methods for Nonlinear Optimization.”
You do not currently have access to this content.