Abstract

Cable-driven parallel robots (CDPRs) have been widely used in engineering fields because of their significant advantages including high load-bearing capacity, large workspace, and low inertia. However, the impact of convergence speed and solution accuracy of optimization approaches on optimal performances can become a key issue when it comes to the optimal design of CDPR applied to large storage space. An adaptive adjustment inertia weight particle swarm optimization (AAIWPSO) algorithm is proposed for the multi-objective optimal design of CDPR. The kinematic and static models of CDPR are established based on the principle of virtual work. Subsequently, two performance indices including workspace and dexterity are derived. A multi-objective optimization model is established based on performance indices. The AAIWPSO algorithm introduces an adaptive adjustment inertia weight to improve the convergence efficiency and accuracy of traditional particle swarm optimization (PSO) algorithm. Numerical examples demonstrate that final convergence values of the objective function by the AAIWPSO algorithm can almost be 14∼20% and 19∼40% higher than those by the PSO algorithm and genetic algorithm (GA) for the optimal design of CDPR with different configurations and masses of end-effectors, respectively.

References

1.
Zhang
,
Z. K.
,
Shao
,
Z. F.
,
You
,
Z.
,
Tang
,
X. Q.
,
Zi
,
B.
,
Yang
,
G. L.
,
Gosslin
,
C.
, and
Caro
,
S.
,
2022
, “
State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots
,”
Front. Mech. Eng.
,
17
(
3
), p.
37
.
2.
Zhang
,
B.
,
Shang
,
W. W.
,
Cong
,
S.
, and
Li
,
Z. J.
,
2020
, “
Coordinated Dynamic Control in the Task Space for Redundantly Actuated Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2396
2407
.
3.
Sancak
,
C.
, and
Itik
,
M.
,
2021
, “
Out-of-Plane Vibration Suppression and Position Control of a Planar Cable-Driven Robot
,”
IEEE/ASME Trans. Mechatron.
,
27
(
3
), pp.
1311
1320
.
4.
Paez-Granados
,
D. F.
,
Kadone
,
H.
,
Hassan
,
M.
,
Chen
,
Y.
, and
Suzuki
,
K.
,
2022
, “
Personal Mobility With Synchronous Trunk–Knee Passive Exoskeleton: Optimizing Human–Robot Energy Transfer
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3613
3623
.
5.
Duan
,
J. H.
,
Shao
,
Z. F.
,
Zhang
,
Z. K.
, and
Peng
,
F. Z.
,
2022
, “
Performance Simulation and Energetic Analysis of TBot High-Speed Cable-Driven Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
024504
.
6.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M. C.
,
2014
, “
Analysis of Kinematics and Reconfigurability of a Spherical Parallel Manipulator
,”
IEEE Trans. Robot.
,
30
(
6
), pp.
1541
1547
.
7.
Cuvillon
,
L.
,
Weber
,
X.
, and
Gangloff
,
J.
,
2020
, “
Modal Control for Active Vibration Damping of Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051004
.
8.
Hussein
,
H.
,
Santos
,
J. C.
, and
Gouttefarde
,
M.
,
2018
, “
Geometric Optimization of a Large Scale CDPR Operating on a Building Façade
,”
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
5117
5124
.
9.
Wang
,
Y. X.
, and
Xu
,
Q. S.
,
2021
, “
Design and Testing of a Soft Parallel Robot Based on Pneumatic Artificial Muscles for Wrist Rehabilitation
,”
Sci. Rep.
,
11
(
1
), p.
1273
.
10.
Mamidi
,
T. K.
, and
Bandyopadhyay
,
S.
,
2021
, “
Forward Dynamic Analyses of Cable-Driven Parallel Robots With Constant Input With Applications to Their Kinetostatic Problems
,”
Mech. Mach. Theory
,
163
, p.
104381
.
11.
Fabritius
,
M.
,
Martin
,
C.
, and
Pott
,
A.
,
2018
, “
Calculation of the Collision-Free Printing Workspace for Fully-Constrained Cable-Driven Parallel Robots
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, p.
51814
, V05BT07A046.
12.
Liu
,
H. T.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskemethy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
734
741
.
13.
Jiang
,
Q. M.
, and
Gosselin
,
C. M.
,
2008
, “
Singularity Equations of Gough–Stewart Platforms Using a Minimal Set of Geometric Parameters
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112303
.
14.
Gao
,
C. Q.
,
Huang
,
H. L.
,
Li
,
Y.
, and
Bing
,
L.
,
2022
, “
Design and Analysis of a Three-Fingered Deployable Metamorphic Robotic Grasper
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083302
.
15.
Wu
,
C.
,
Liu
,
X. J.
,
Wang
,
L. P.
, and
Wang
,
J. S.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
16.
Gao
,
H. B.
,
Sun
,
G. Y.
,
Liu
,
Z.
,
Sun
,
C.
,
Li
,
N.
,
Ding
,
L.
,
Yu
,
H. T.
, and
Deng
,
Z. Q.
,
2022
, “
Tension Distribution Algorithm Based on Graphics With High Computational Efficiency and Robust Optimization for Two-Redundant Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
172
, p.
104739
.
17.
Zhang
,
W. X.
,
Zhang
,
W.
,
Ding
,
X. L.
, and
Sun
,
L.
,
2020
, “
Optimization of the Rotational Asymmetric Parallel Mechanism for Hip Rehabilitation With Force Transmission Factors
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041006
.
18.
Gueners
,
D.
,
Chanal
,
H.
, and
Bouzgarrou
,
B. C.
,
2020
, “
Stiffness Optimization of a Cable Driven Parallel Robot for Additive Manufacturing
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
843
849
.
19.
Sun
,
C.
,
Gao
,
H. B.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H. T.
,
Li
,
N.
, and
Deng
,
Z. Q.
,
2021
, “
Design and Optimization of Three-Degree-of-Freedom Planar Adaptive Cable-Driven Parallel Robots Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
166
, p.
104475
.
20.
Brahmi
,
B.
,
Ahmed
,
T.
,
Elbojairami
,
I. E.
,
Swapnil
,
A. A. Z.
,
Zaman
,
M. A. U.
,
Schultz
,
K.
,
McGonigle
,
E.
, and
Rahman
,
M. H.
,
2021
, “
Flatness Based Control of a Novel Smart Exoskeleton Robot
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
974
984
.
21.
Zhang
,
Z. K.
,
Shao
,
Z. F.
, and
Wang
,
L. P.
,
2020
, “
Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
, p.
103693
.
22.
Song
,
C.
, and
Lau
,
D. W.
,
2022
, “
Workspace-Based Model Predictive Control for Cable-Driven Robots
,”
IEEE Trans. Robot.
,
38
(
4
), pp.
2577
2596
.
23.
Jamshidifar
,
H.
,
Khajepour
,
A.
, and
Korayem
,
A. H.
,
2021
, “
Wrench Feasibility and Workspace Expansion of Planar Cable-Driven Parallel Robots by a Novel Passive Counterbalancing Mechanism
,”
IEEE Trans. Robot.
,
37
(
3
), pp.
935
947
.
24.
Gao
,
J.
,
Zhou
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhao
,
P.
,
2022
, “
Kinematic Uncertainty Analysis of a Cable-Driven Parallel Robot Based on an Error Transfer Model
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051008
.
25.
Viegas
,
C.
,
Daney
,
D.
,
Tavakoli
,
M.
, and
Almeida
,
A. T.
,
2017
, “
Performance Analysis and Design of Parallel Kinematic Machines Using Interval Analysis
,”
Mech. Mach. Theory
,
115
, pp.
218
236
.
26.
Zhou
,
B.
,
Zi
,
B.
, and
Qian
,
S.
,
2017
, “
Dynamics-Based Nonsingular Interval Model and Luffing Angular Response Field Analysis of the DACS With Narrowly Bounded Uncertainty
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2599
2626
.
27.
Zhang
,
X. B.
,
Lu
,
Z. Z.
, and
Cheng
,
K.
,
2021
, “
Reliability Index Function Approximation Based on Adaptive Double-Loop Kriging for Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
108020
.
28.
Wang
,
Z. L.
,
Zhao
,
D. Y.
, and
Guan
,
Y.
,
2023
, “
Flexible-Constrained Time-Variant Hybrid Reliability-Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
66
(
4
), pp.
1
14
.
29.
Yang
,
C.
,
Ye
,
W.
, and
Li
,
Q. C.
,
2022
, “
Review of the Performance Optimization of Parallel Manipulators
,”
Mech. Mach. Theory
,
170
, p.
104725
.
30.
Chen
,
Y.
,
Yan
,
J. Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Particle Swarm Optimization-Based Metaheuristic Design Generation of Non-Trivial Flat-Foldable Origami Tessellations With Degree-4 Vertices
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011703
.
31.
Chu
,
S.
,
Xiao
,
M.
,
Gao
,
L.
,
Zhang
,
Y.
, and
Zhang
,
J. H.
,
2021
, “
Robust Topology Optimization for Fiber-Reinforced Composite Structures Under Loading Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113935
.
32.
Zhou
,
Q.
,
Guo
,
S. J.
,
Xu
,
L.
,
Gao
,
X. X.
,
Williams
,
H.
,
Xu
,
H. M.
, and
Yan
,
F. W.
,
2021
, “
Global Optimization of the Hydraulic-Electromagnetic Energy-Harvesting Shock Absorber for Road Vehicles With Human-Knowledge-Integrated Particle Swarm Optimization Scheme
,”
IEEE/ASME Trans. Mechatron.
,
26
(
3
), pp.
1225
1235
.
33.
Meng
,
Q. Z.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Takeda
,
Y. K.
,
2020
, “
Screw Theory-Based Motion/Force Transmissibility Analysis of High-Speed Parallel Robots With Articulated Platforms
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041011
.
34.
Zhang
,
D.
, and
Wei
,
B.
,
2017
, “
Modelling and Optimisation of a 4-DOF Hybrid Robotic Manipulator
,”
Int. J. Comput. Integr. Manuf.
,
30
(
11
), pp.
1179
1189
.
35.
Hamida
,
I. B.
,
Laribi
,
M. A.
,
Mlika
,
A.
,
Loft
,
R.
,
Zeghloul
,
S.
, and
Carbone
,
G.
,
2021
, “
Multi-Objective Optimal Design of a Cable Driven Parallel Robot for Rehabilitation Tasks
,”
Mech. Mach. Theory
,
156
, p.
104141
.
36.
Zhang
,
Z. K.
,
Shao
,
Z. F.
,
Peng
,
F. Z.
,
Li
,
H. S.
, and
Wang
,
L. P.
,
2020
, “
Workspace Analysis and Optimal Design of a Translational Cable-Driven Parallel Robot With Passive Springs
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051005
.
37.
Hu
,
B.
,
2016
, “
Kinematically Identical Manipulators for the Exechon Parallel Manipulator and Their Comparison Study
,”
Mech. Mach. Theory
,
103
, pp.
117
137
.
38.
Martin-Parra
,
A.
,
Juarez-Perez
,
S.
,
Gonzalez-Rodriguez
,
A.
,
Gonzalez-Rodriguez
,
A. G.
,
Lopez-Diaz
,
A. I.
, and
Rubio-Gomez
,
G.
,
2023
, “
A Novel Design for Fully Constrained Planar Cable-Driven Parallel Robots to Increase Their Wrench-Feasible Workspace
,”
Mech. Mach. Theory
,
180
, p.
105159
.
39.
Wang
,
J.
, and
Lau
,
H. Y. K.
,
2021
, “
Dexterity Analysis Based on Jacobian and Performance Optimization for Multi-Segment Continuum Robots
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061012
.
40.
Brauers
,
W. K. M.
, and
Zavadskas
,
E. K.
,
2012
, “
Robustness of MULTIMOORA: A Method for Multi-Objective Optimization
,”
Informatica
,
23
(
1
), pp.
1
25
.
41.
Xiong
,
H.
,
Cao
,
H. H.
,
Zeng
,
W. F.
,
Huang
,
J. C.
,
Diao
,
X. M.
,
Lu
,
W. J.
, and
Lou
,
Y. J.
,
2022
, “
Real-Time Reconfiguration Planning for the Dynamic Control of Reconfigurable Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060913
.
42.
Syamlan
,
A. T.
,
Nurahmi
,
L.
,
Tamara
,
M. N.
, and
Pramujati
,
B.
,
2020
, “
Dynamic Trajectory Planning of Reconfigurable Suspended Cable Robot
,”
Int. J. Dyn. Control
,
8
, pp.
887
897
.
You do not currently have access to this content.