Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Effective coordination of design teams must account for the influence of costs incurred while searching for the best design solutions. This article introduces a cost-aware multi-agent system (MAS), a theoretical model to (1) explain how individuals in a team should search, assuming that they are all rational utility-maximizing decision-makers and (2) study the impact of cost on the search performance of both individual agents and the system. First, we develop a new multi-agent Bayesian optimization framework accounting for information exchange among agents to support their decisions on where to sample in search. Second, we employ a reinforcement learning approach based on the multi-agent deep deterministic policy gradient for training MAS to identify where agents cannot sample due to design constraints. Third, we propose a new cost-aware stopping criterion for each agent to determine when costs outweigh potential gains in search as a criterion to stop. Our results indicate that cost has a more significant impact on MAS communication in complex design problems than in simple ones. For example, when searching in complex design spaces, some agents could initially have low-performance gains, thus stopping prematurely due to negative payoffs, even if those agents could perform better in the later stage of the search. Therefore, global-local communication becomes more critical in such situations for the entire system to converge. The proposed model can serve as a benchmark for empirical studies to quantitatively gauge how humans would rationally make design decisions in a team.

References

1.
Kang
,
E.
,
Jackson
,
E.
, and
Schulte
,
W.
,
2011
, “
An Approach for Effective Design Space Exploration
,”
Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems: 16th Monterey Workshop 2010
,
Redmond, WA
,
Mar. 31–Apr. 2
, Revised Selected Papers 16,
Springer
, pp.
33
54
.
2.
Marcin
,
A.
,
Denil
,
M.
,
Gomez
,
S.
,
Hoffman
,
M. W.
,
Pfau
,
D.
,
Schaul
,
T.
,
Shillingford
,
B.
, and
De Freitas
,
N.
,
2016
, “
Learning to Learn by Gradient Descent by Gradient Descent
,”
Adv. Neural Infor. Process. Syst.
,
29
.
3.
Bottou
,
L.
,
2010
, “
Large-Scale Machine Learning With Stochastic Gradient Descent
”,”
Proceedings of COMPSTAT’2010: 19th International Conference on Computational Statistics
,
Paris France
,
Aug. 22–27
, Keynote, Invited and Contributed Papers,
Springer
, pp.
177
186
.
4.
Zijun
,
J.
,
2018
, “
Improved Adam Optimizer for Deep Neural Networks
,” 2018 IEEE/ACM 26th international Symposium on Quality of Service (IWQoS), pp.
1
2
. IEEE.
5.
Bajaj
,
I.
,
Arora
,
A.
, and
Hasan
,
M. F.
,
2021
, “
Black-Box Optimization: Methods and Applications
,”
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems
,
P. M.
Pardalos
,
V.
Rasskazova
, and
M. N.
Vrahatis
, eds.,
Springer
,
Cham, Switzerland
, pp.
35
65
.
6.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2015
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
7.
Gelbart
,
M. A.
,
Snoek
,
J.
, and
Adams
,
R. P.
,
2014
, “
Bayesian Optimization With Unknown Constraints
,” 30th Conference on Uncertainty in Artificial Intelligence, UAI 2014, AUAI Press, pp.
250
259
.
8.
Panchal
,
J. H.
,
Sha
,
Z.
, and
Kannan
,
K. N.
,
2017
, “
Understanding Design Decisions Under Competition Using Games With Information Acquisition and a Behavioral Experiment
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091402
.
9.
Cao
,
F.
,
Zhu
,
M. M.
, and
Ding
,
D.
,
2013
, “
Distributed Workflow Scheduling Under Throughput and Budget Constraints in Grid Environments
,”
Workshop on Job Scheduling Strategies for Parallel Processing
,
Boston, MA
,
May 24
,
Springer
, pp.
62
80
.
10.
Yu
,
J.
, and
Buyya
,
R.
,
2006
, “
A Budget Constrained Scheduling of Workflow Applications on Utility Grids Using Genetic Algorithms
,”
2006 Workshop on Workflows in Support of Large-Scale Science
,
Paris, France
,
June 19
,
IEEE
, pp.
1
10
.
11.
Zhu
,
H.
,
2017
, “
Maximizing Group Performance While Minimizing Budget
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
50
(
2
), pp.
633
645
.
12.
Chen
,
S.
,
Bayrak
,
A. E.
, and
Sha
,
Z.
,
2023
, “
Multi-agent Bayesian Optimization for Unknown Design Space Exploration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
,
American Society of Mechanical Engineers
, Vol. 87318, p. V03BT03A047.
13.
Lowe
,
R.
,
Wu
,
Y. I.
,
Tamar
,
A.
,
Harb
,
J.
,
Pieter Abbeel
,
O.
, and
Mordatch
,
I.
,
2017
, “
Multi-agent Actor-Critic for Mixed Cooperative-Competitive Environments
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, Vol.
30
, pp.
6379
6390
.
14.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems
,
Lake Tahoe, NV
,
Dec. 3–6
, Vol.
25
, pp.
2951
2959
.
15.
Kontar
,
R.
,
Shi
,
N.
,
Yue
,
X.
,
Chung
,
S.
,
Byon
,
E.
,
Chowdhury
,
M.
,
Jin
,
J.
,
Kontar
,
W.
,
Masoud
,
N.
,
Nouiehed
,
M.
, and
Okwudire
,
C. E.
,
2021
, “
The Internet of Federated Things (IoFT)
,”
IEEE Access
,
9
(
1
), p.
156071
.
16.
Peralta
,
F.
,
Reina
,
D. G.
, and
Toral
,
S.
,
2023
, “
Water Quality Online Modeling Using Multi-objective and Multi-agent Bayesian Optimization With Region Partitioning
,”
Mechatronics
,
91
, p.
102953
.
17.
Gramacy
,
R. B.
,
Gray
,
G. A.
,
Le Digabel
,
S.
,
Lee
,
H. K.
,
Ranjan
,
P.
,
Wells
,
G.
, and
Wild
,
S. M.
,
2014
,
Modeling an Augmented Lagrangian for Improved Blackbox Constrained Optimization
,
GERAD HEC Montréal
,
Canada
.
18.
Gramacy
,
R. B.
,
Gray
,
G. A.
,
Le Digabel
,
S.
,
Lee
,
H. K.
,
Ranjan
,
P.
,
Wells
,
G.
, and
Wild
,
S. M.
,
2016
, “
Modeling an Augmented Lagrangian for Blackbox Constrained Optimization
,”
Technometrics
,
58
(
1
), pp.
1
11
.
19.
Tran
,
A.
,
Eldred
,
M.
,
McCann
,
S.
, and
Wang
,
Y.
,
2020
, “
srMO-BO-3GP: A Sequential Regularized Multi-objective Constrained Bayesian Optimization for Design Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 83983
,
Virtual Online
,
Aug. 17–20
,
American Society of Mechanical Engineers
, p.
V009T09A015
.
20.
Letham
,
B.
,
Karrer
,
B.
,
Ottoni
,
G.
, and
Bakshy
,
E.
,
2019
, “
Constrained Bayesian Optimization With Noisy Experiments
.”
Bayesian Analysis
,
14
(
2
), pp.
495
519
.
21.
Bernardo
,
J.
,
Bayarri
,
M.
,
Berger
,
J.
,
Dawid
,
A.
,
Heckerman
,
D.
,
Smith
,
A.
, and
West
,
M.
,
2011
, “
Optimization Under Unknown Constraints
,”
Bayesian Statistics
,
9
(
9
), p.
229
. .
22.
Freriks
,
H.
,
Heemels
,
W.
,
Muller
,
G.
, and
Sandee
,
J.
,
2006
, “
5.3. 2 on the Systematic Use of Budget-Based Design: Sixteenth Annual International Symposium of the International Council on Systems Engineering (INCOSE)
,”
INCOSE International Symposium
,
Orlando, FL
,
July 8–14
, Vol.
16
,
Wiley Online Library
, pp.
788
803
.
23.
Wertz
,
J. R.
,
Larson
,
W. J.
,
Kirkpatrick
,
D.
, and
Klungle
,
D.
,
1999
,
Space Mission Analysis and Design
, Vol.
8
,
Springer
,
Torrance, CA
.
24.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
25.
Pandita
,
P.
,
Bilionis
,
I.
, and
Panchal
,
J.
,
2016
, “
Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111412
.
26.
Moore
,
R. A.
,
Romero
,
D. A.
, and
Paredis
,
C. J.
,
2014
, “
Value-Based Global Optimization
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041003
.
27.
Lorenz
,
R.
,
Monti
,
R. P.
,
Violante
,
I. R.
,
Faisal
,
A. A.
,
Anagnostopoulos
,
C.
,
Leech
,
R.
, and
Montana
,
G.
,
2015
, “
Stopping Criteria for Boosting Automatic Experimental Design Using Real-Time FMRI With Bayesian Optimization
,” arXiv preprint arXiv:1511.07827.
28.
McLeod
,
M.
,
Roberts
,
S.
, and
Osborne
,
M. A.
,
2018
, “
Optimization, Fast and Slow: Optimally Switching Between Local and Bayesian Optimization
,”
International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
,
PMLR
, pp.
3443
3452
.
29.
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2018
, “
How Do Designers Choose Among Multiple Noisy Information Sources in Engineering Design Optimization? An Experimental Study
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 51753
,
Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, p.
V02AT03A021
.
30.
Frazier
,
P. I.
,
2018
, “
Bayesian Optimization
,” Recent Advances in Optimization and Modeling of Contemporary Problems, Informs, pp.
255
278
.
31.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Summer School on Machine Learning
,
B.
Schölkopf
and
M. K.
Warmuth
, eds.,
Springer
,
Berlin, Germany
, pp.
63
71
.
32.
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2020
, “
Descriptive Models of Sequential Decisions in Engineering Design: An Experimental Study
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081704
.
33.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M.
,
2009
, “
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
,” Proceedings of the 27th International Conference on Machine Learning, Omnipress, pp.
1015
1022
.
34.
Silver
,
D.
,
Lever
,
G.
,
Heess
,
N.
,
Degris
,
T.
,
Wierstra
,
D.
, and
Riedmiller
,
M.
,
2014
, “
Deterministic Policy Gradient Algorithms
,”
International Conference on Machine Learning
,
Beijing, China
,
June 21–26
,
PMLR
, pp.
387
395
.
35.
Agrawal
,
A.
, and
McComb
,
C.
,
2023
, “
Reinforcement Learning for Efficient Design Space Exploration With Variable Fidelity Analysis Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041004
.
36.
González
,
J.
,
Dai
,
Z.
,
Hennig
,
P.
, and
Lawrence
,
N.
,
2016
, “
Batch Bayesian Optimization via Local Penalization
,”
Artificial Intelligence and Statistics
,
Cadiz, Spain
,
May 9–11
,
PMLR
, pp.
648
657
.
37.
Kaipa
,
K. N.
, and
Ghose
,
D.
,
2017
, “Multimodal Function Optimization,”
Glowworm Swarm Optimization. Studies in Computational Intelligence
, vol 698. Springer, Cham.
38.
Floudas
,
C. A.
,
Pardalos
,
P. M.
,
Adjiman
,
C.
,
Esposito
,
W. R.
,
Gümüs
,
Z. H.
,
Harding
,
S. T.
,
Klepeis
,
J. L.
,
Meyer
,
C. A.
, and
Schweiger
,
C. A.
,
2013
, “Certified Global Minima for a Benchmark of Difficult Optimization Problems,”
Handbook of Test Problems in Local and Global Optimization
. Vol. 33. Springer Science & Business Media.
You do not currently have access to this content.