Abstract

This study explores the integration of four-bar mechanisms in robotic exoskeletons, a field with a significant impact on rehabilitation and augmenting physical capabilities. Four-bar mechanisms, known for their simple structure and versatile motion, can enhance exoskeletons by mimicking human joint movement, offering a more natural and comfortable experience. The study aims to investigate the benefits and design elements of four-bar linkages in exoskeletons, analyzing 93 different models categorized by target body part, actuation type, and usage. The research addresses the potential improvements and challenges in this area, paving the way for advanced, user-focused exoskeleton development.

References

1.
Orlando
,
M. F.
,
Akolkar
,
H.
,
Dutta
,
A.
,
Saxena
,
A.
, and
Behera
,
L.
,
2010
, “
Optimal Design and Control of a Thumb Exoskeleton
,”
TENCON 2010—2010 IEEE Region 10 Conference
,
Fukuoka, Japan
,
Nov. 21–24
, pp.
1492
1497
.
2.
Sanz-Morere
,
C. B.
,
Fantozzi
,
M.
,
Parri
,
A.
,
Giovacchini
,
F.
,
Baldoni
,
A.
,
Cempini
,
M.
,
Crea
,
S.
,
Lefeber
,
D.
, and
Vitiello
,
N.
,
2019
, “
A Knee–Ankle–Foot Orthosis to Assist the Sound Limb of Transfemoral Amputees
,”
IEEE Trans. Med. Rob. Bion.
,
1
(
1
), pp.
38
48
.
3.
Attal
,
A.
, and
Dutta
,
A.
,
2022
, “
Design of a Variable Stiffness Index Finger Exoskeleton
,”
Robotica
,
40
(
4
), pp.
1151
1167
.
4.
Singh
,
R.
,
Chaudhary
,
H.
, and
Singh
,
A. M.
,
2019
, “
A Novel Gait-Inspired Four-Bar Lower Limb Exoskeleton to Guide the Walking Movement
,”
J. Mech. Med. Biol.
,
19
(
4
), p.
1950020
.
5.
Niyetkaliyev
,
A. S.
,
Hussain
,
S.
,
Ghayesh
,
M. H.
, and
Alici
,
G.
,
2017
, “
Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses
,”
IEEE Trans. Hum. Mach. Syst.
,
47
(
6
), pp.
1134
1145
.
6.
Altenburger
,
R.
,
Scherly
,
D.
, and
Stadler
,
K. S.
,
2016
, “
Design of a Passive, Iso-Elastic Upper Limb Exoskeleton for Gravity Compensation
,”
ROBOMECH J.
,
3
(
1
), p.
12
.
7.
Ishmael
,
M. K.
,
Archangeli
,
D.
, and
Lenzi
,
T.
,
2022
, “
A Powered Hip Exoskeleton With High Torque Density for Walking, Running, and Stair Ascent
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4561
4572
.
8.
Kazerooni
,
H.
,
Tung
,
W.
, and
Pillai
,
M.
,
2019
, “
Evaluation of Trunk-Supporting Exoskeleton
,”
Proc. Hum. Factors Ergonom. Soc. Annu. Meet.
,
63
(
1
), pp.
1080
1083
.
9.
Ranaweera
,
R. K. P. S.
,
Jayasiri
,
W. A. T. I.
,
Tharaka
,
W. G. D.
,
Gunasiri
,
J. H. H. P.
,
Gopura
,
R. A. R. C.
,
Jayawardena
,
T. S. S.
, and
Mann
,
G. K. I.
,
2018
, “
Anthro-X: Anthropomorphic Lower Extremity Exoskeleton Robot for Power Assistance
,”
2018 4th International Conference on Control, Automation and Robotics (ICCAR)
,
Auckland, New Zealand
,
Apr. 20–23, 2018
, pp.
82
87
.
10.
Li
,
H.
,
Cheng
,
L.
,
Li
,
Z.
, and
Li
,
G.
,
2021
, “
UCAS-Hand: An Underactuated Powered Hand Exoskeleton for Assisting Grasping Task
,”
2021 IEEE International Conference on Real-Time Computing and Robotics (RCAR)
,
Xining, China
,
July 15–19
, pp.
1
6
.
11.
Omirbayev
,
S.
,
Issa
,
I.
,
Kuangaliyev
,
Z.
,
Turganbayev
,
A.
, and
Niyetkaliyev
,
A.
,
2022
, “
The Use of Four-Bar Mechanisms in Robotic Exoskeletons
,”
2022 International Conference on Advanced Mechatronic Systems (ICAMechS)
,
Toyama, Japan
,
Dec. 17–20
, pp.
149
156
.
12.
Hernández
,
A.
,
Muñoyerro
,
A.
,
Urízar
,
M.
, and
Amezua
,
E.
,
2021
, “
Comprehensive Approach for the Dimensional Synthesis of a Four-Bar Linkage Based on Path Assessment and Reformulating the Error Function
,”
Mech. Mach. Theory
,
156
, p.
104126
.
13.
Natesan
,
A.
,
1994
, “Kinematic Analysis and Synthesis of Four-Bar Mechanisms for Straight Line Coupler Curves,” CorpusID: 118688749, https://api.semanticscholar.org/.
14.
Orlando
,
M. F.
,
Akolkar
,
H.
,
Dutta
,
A.
,
Saxena
,
A.
, and
Behera
,
L.
,
2010
, “
Optimal Design and Control of a Hand Exoskeleton
,”
2010 IEEE Conference on Robotics, Automation and Mechatronics
,
Singapore
,
June 28–30
, pp.
72
77
.
15.
Felix Orlando
,
M.
,
Behera
,
L.
,
Dutta
,
A.
, and
Saxena
,
A.
,
2020
, “
Optimal Design and Redundancy Resolution of a Novel Robotic Two-Fingered Exoskeleton
,”
IEEE Trans. Med. Rob. Bion.
,
2
(
1
), pp.
59
75
.
16.
Singh
,
R.
,
Chaudhary
,
H.
, and
Singh
,
A. K.
,
2018
, “
A Novel Gait-Based Synthesis Procedure for the Design of 4-Bar Exoskeleton With Natural Trajectories
,”
J. Orthop. Transl.
,
12
, pp.
6
15
.
17.
Kim
,
H. J.
,
Noh
,
J.
, and
Yang
,
W.
,
2020
, “
Knee-Assistive Robotic Exoskeleton (KARE-1) Using a Conditionally Singular Mechanism for Industrial Field Applications
,”
Appl. Sci.
,
10
(
15
).
18.
Hyun
,
D. J.
,
Bae
,
K.
,
Kim
,
K.
,
Nam
,
S.
, and
Lee
,
D.
,
2019
, “
A Lightweight Passive Upper Arm Assistive Exoskeleton Based on Multi-linkage Spring-Energy Dissipation Mechanism for Overhead Tasks
,”
Rob. Auton. Syst.
,
122
, p.
103309
.
19.
Uchida
,
T.
, and
McPhee
,
J.
,
2011
, “
Triangularizing Kinematic Constraint Equations Using Gröbner Bases for Real-Time Dynamic Simulation
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
335
356
.
20.
Damir
,
M.
,
Rashed
,
E.
, and
Elkhatib
,
A.
,
2018
, “
Effect of Manufacturing Tolerances and Assembly Errors on the Characteristics of Small Scale Slider Crank Mechanisms
,”
2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE)
,
Budapest, Hungary
,
July 10–13
, pp.
603
607
.
21.
Beckers
,
J.
,
Verstraten
,
T.
,
Verrelst
,
B.
,
Contino
,
F.
, and
Van Mierlo
,
J.
,
2021
, “
Analysis of the Dynamics of a Slider-Crank Mechanism Locally Actuated With an Act-and-Wait Controller
,”
Mech. Mach. Theory
,
159
, p.
104253
.
22.
Arnaud
,
H.
, and
Yannick
,
A.
,
2015
, “
Walking Gait of a Planar Bipedal Robot With Four-Bar Knees
,”
Mov. Sport Sci./Sci. Mot.
,
90
(
4
), pp.
87
97
.
23.
Tanık
,
E.
, and
Parlaktaş
,
V.
,
2011
, “
A New Type of Compliant Spatial Four-bar (RSSR) Mechanism
,”
Mech. Mach. Theory
,
46
(
5
), pp.
593
606
.
24.
Kumar
,
M.
,
Verma
,
A. S.
,
Sharma
,
M.
,
Srivastava
,
U.
, and
Tyagi
,
R. K.
,
2015
, “
Kinematic Analysis of Automated Elliptical Trammel for Cutting Applications
,”
Arch. Appl. Sci. Res.
,
7
(
5
), pp.
97
101
.
25.
Pin
,
W.
,
Hong
,
L.
, and
Shi’en
,
W.
,
2011
, “
New Method for Input-Output Equation of Spherical Four-Bar Mechanism
,”
2011 International Conference on Multimedia Technology
,
Hangzhou, China
,
July 26–28
, pp.
4986
4989
.
26.
Parlaktaş
,
V.
,
Tanık
,
E.
, and
Tanık
,
Ç. M.
,
2019
, “
On the Design of a Novel Fully Compliant Spherical Four-Bar Mechanism
,”
Adv. Mech. Eng.
,
11
(
9
), p.
1687814019879548
.
27.
Leonardis
,
D.
,
Chisari
,
C.
,
Bergamasco
,
M.
,
Frisoli
,
A.
,
Barsotti
,
M.
,
Loconsole
,
C.
,
Solazzi
,
M.
, et al
,
2015
, “
An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation
,”
IEEE Trans. Hapt.
,
8
(
2
), pp.
140
151
.
28.
Ren
,
Y.
,
Park
,
H.-S.
, and
Zhang
,
L.-Q.
,
2009
, “
Developing a Whole-Arm Exoskeleton Robot With Hand Opening and Closing Mechanism for Upper Limb Stroke Rehabilitation
,”
2009 IEEE International Conference on Rehabilitation Robotics
,
Kyoto, Japan
,
June 23–26
, pp.
761
765
.
29.
Schabowsky
,
C. N.
,
Godfrey
,
S. B.
,
Holley
,
R. J.
, and
Lum
,
P. S.
,
2010
, “
Development and Pilot Testing of HEXORR: Hand EXOskeleton Rehabilitation Robot
,”
J. NeuroEng. Rehabil.
,
7
(
1
), p.
36
.
30.
Wang
,
D.
,
Meng
,
Q.
,
Meng
,
Q.
,
Li
,
X.
, and
Yu
,
H.
,
2018
, “
Design and Development of a Portable Exoskeleton for Hand Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
12
), pp.
2376
2386
.
31.
Jo
,
I.
, and
Bae
,
J.
,
2017
, “
Design and Control of a Wearable and Force-Controllable Hand Exoskeleton System
,”
Mechatronics
,
41
, pp.
90
101
.
32.
Lambercy
,
O.
,
Schröder
,
D.
,
Zwicker
,
S.
, and
Gassert
,
R.
,
2013
, “
Design of a Thumb Exoskeleton for Hand Rehabilitation
,”
i-CREATe ‘13: Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology
,
Gyeonggi-do, South Korea
,
Aug. 29–31
, pp.
1
4
.
33.
Abdallah
,
I. B.
,
Bouteraa
,
Y.
, and
Rekik
,
C.
,
2017
, “
Design and Development of 3D Printed Myoelectric Robotic Exoskeleton for Hand Rehabilitation
,”
Int. J. Smart Sens. Intell. Syst.
,
10
(
2
), pp.
1
26
.
34.
Gupta
,
S.
,
Agrawal
,
A.
, and
Singla
,
E.
,
2022
, “
Toward Avoiding Misalignment: Dimensional Synthesis of Task-Oriented Upper-Limb Hybrid Exoskeleton
,”
Robotics
,
11
(
4
), p.
74
.
35.
Dewald
,
J. P.
,
Pope
,
P. S.
,
Given
,
J. D.
,
Buchanan
,
T. S.
, and
Rymer
,
W. Z.
,
1995
, “
Abnormal Muscle Coactivation Patterns During Isometric Torque Generation at the Elbow and Shoulder in Hemiparetic Subjects
,”
Brain
,
118
(
Pt. 2
), pp.
495
510
.
36.
Kittisares
,
S.
,
Nabae
,
H.
,
Endo
,
G.
,
Suzumori
,
K.
, and
Sakurai
,
R.
,
2020
, “
Design of Knee Support Device Based on Four-Bar Linkage and Hydraulic Artificial Muscle
,”
ROBOMECH J.
,
7
(
1
), p.
16
.
37.
Godoy
,
J. C.
,
Campos
,
I. J.
,
Pérez
,
L. M.
, and
Muñoz
,
L. R.
,
2018
, “
Nonanthropomorphic Exoskeleton With Legs Based on Eight-Bar Linkages
,”
Int. J. Adv. Rob. Syst.
,
15
(
1
), p.
1729881418755770
.
38.
Karami
,
M.
,
Maurice
,
G.
, and
Andre
,
J.
,
2004
, “
A Model of Exo-Prosthesis of the Knee Optimized With Respect to the Physiological Motion of Condyles
,”
ITBM-RBM
,
25
(
3
), pp.
176
184
.
39.
Chaichaowarat
,
R.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2018
, “
Unpowered Knee Exoskeleton Reduces Quadriceps Activity During Cycling
,”
Engineering
,
4
(
4
), pp.
471
478
.
40.
Wang
,
X.
,
Guo
,
S.
,
Qu
,
B.
,
Song
,
M.
, and
Qu
,
H.
,
2020
, “
Design of a Passive Gait-Based Ankle-Foot Exoskeleton With Self-Adaptive Capability
,”
Chin. J. Mech. Eng.
,
33
, pp.
1
11
.
41.
Moon
,
C.
,
Bae
,
J.
,
Kwak
,
J.
, and
Hong
,
D.
,
2022
, “
A Lower-Back Exoskeleton With a Four-Bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
30
, pp.
729
737
.
42.
Kim
,
H.-J.
,
Lim
,
D.-H.
,
Kim
,
W.-S.
, and
Han
,
C.-S.
,
2020
, “
Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
227
236
.
43.
Gao
,
M.
,
Wang
,
Z.
,
Li
,
S.
,
Li
,
J.
,
Pang
,
Z.
,
Liu
,
S.
, and
Duan
,
Z.
,
2021
, “
Design and Optimization of Exoskeleton Structure of Lower Limb Knee Joint Based on Cross Four-Bar Linkage
,”
AIP Adv.
,
11
(
6
), p.
065124
.
44.
Miyamoto
,
T.
,
Ccorimanya
,
L.
,
Hassan
,
M.
,
Puentes
,
S.
, and
Suzuki
,
K.
,
2022
, “
Joint Synergy-Based Rehabilitative Exoskeleton for Rodents
,”
2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Sapporo, Japan
,
July 11–15
, pp.
1225
1230
.
45.
Liang
,
R.
,
Xu
,
G.
,
Zhang
,
S.
,
Zheng
,
X.
,
Li
,
L.
,
Wu
,
Y.
,
Luo
,
A.
, and
Zhang
,
X.
,
2017
, “
Design of Rigid-Compliant Parallel Exoskeleton Knee Joint
,”
2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC)
,
Chongqing, China
,
Oct. 3–5
, pp.
440
443
.
46.
Zeng
,
H.
,
Zeng
,
B.
,
Yuan
,
G.
,
Liu
,
X.
, and
Yu
,
Z.
,
2022
, “
Design and Optimization of 2DOF Humanoid Dual Cross Four-Bar Mechanism for Knee Joint of an Exoskeleton
,”
2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Jinghong, China
,
Dec. 5–9
, pp.
555
562
.
47.
Xiao
,
Y.
,
Ji
,
X.
,
Wu
,
H.
,
Zhai
,
X.
,
Fu
,
X.
, and
Zhao
,
J.
,
2020
, “
Bionic Knee Joint Structure and Motion Analysis of a Lower Extremity Exoskeleton
,”
2020 4th International Conference on Robotics and Automation Sciences (ICRAS)
,
Wuhan, China
,
June 12–14
, pp.
91
95
.
48.
Han
,
Y.
,
Liu
,
Y.
, and
Zhang
,
W.
,
2021
, “
Design of a Passive Exoskeleton Chair With an Auxiliary Support Mechanism for Assembly Tasks
,”
2021 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Sanya, China
,
Dec. 27–31
, pp.
199
203
.
49.
Noh
,
J.
,
Kwon
,
J.
,
Yang
,
W.
,
Oh
,
Y.
, and
Bae
,
J.-H.
,
2016
, “
A 4-Bar Mechanism Based for Knee Assist Robotic Exoskeleton Using Singular Configuration
,”
IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
,
Oct. 23–26
, pp.
674
680
.
50.
Kim
,
S.
,
Lee
,
J.
,
Park
,
W.
, and
Bae
,
J.
,
2017
, “
Quantitative Evaluation of Hand Functions Using a Wearable Hand Exoskeleton System
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
1488
1493
.
51.
Ball
,
S. J.
,
Brown
,
I. E.
, and
Scott
,
S. H.
,
2007
, “
A Planar 3DOF Robotic Exoskeleton for Rehabilitation and Assessment
,”
2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Lyon, France
,
Aug. 22–26
, pp.
4024
4027
.
52.
Hunt
,
J.
, and
Lee
,
H.
,
2019
, “
Development of a Low Inertia Parallel Actuated Shoulder Exoskeleton Robot for the Characterization of Neuromuscular Property During Static Posture and Dynamic Movement
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
556
562
.
53.
Kumar
,
T. S.
,
Arun
,
S.
,
Jatadhara
,
G.
,
Majumder
,
A.
, and
Dhar
,
A.
,
2020
, “
Design and Fabrication of Rehabilitation-Based Exoskeleton for Paralytic Arm
,”
2020 International Conference on Smart Electronics and Communication (ICOSEC)
,
Trichy, India
,
Sept. 10–12
, pp.
143
148
.
54.
Chang
,
D.
,
Hunt
,
J.
,
Atkins
,
J.
, and
Lee
,
H.
,
2021
, “
Validation of a Novel Parallel-Actuated Shoulder Exoskeleton Robot for the Characterization of Human Shoulder Impedance
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30– June 5
, pp.
10580
10586
.
55.
Arora
,
A.
, and
Malkin
,
R.
,
2022
, “
HANDLINK: A Dexterous Robotic Hand Exoskeleton Controlled by Motor Imagery (MI)
,”
J. Adv. Med. Med. Res.
,
34
(
23
), pp.
427
436
.
56.
Hunt
,
J.
, and
Lee
,
H.
,
2018
, “
A New Parallel Actuated Architecture for Exoskeleton Applications Involving Multiple Degree-of-Freedom Biological Joints
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051017
.
57.
Schorsch
,
J. F.
,
Keemink
,
A. Q. L.
,
Stienen
,
A. H. A.
,
van der Helm
,
F. C. T.
, and
Abbink
,
D. A.
,
2014
, “
A Novel Self-Aligning Mechanism to Decouple Force and Torques for a Planar Exoskeleton Joint
,”
Mech. Sci.
,
5
(
2
), pp.
29
35
.
58.
Singh
,
R.
,
Chaudhary
,
H.
, and
Singh
,
A. K.
,
2019
, “
Shape Synthesis of an Assistive Knee Exoskeleton Device to Support Knee Joint and Rehabilitate Gait
,”
Disab. Rehabil.: Assist. Technol.
,
14
(
5
), pp.
462
470
.
59.
Jain
,
P.
,
Bera
,
T. K.
,
Singla
,
A.
, and
Isaksson
,
M.
,
2022
, “
Linear Actuator–Based Knee Exoskeleton for Stand–Sit–Stand Motions: A Bond Graph Approach
,”
SIMULATION
,
98
(
8
), pp.
627
644
.
60.
Delgado
,
P.
,
Arachchige Don
,
T. A.
,
Gomez
,
J.
,
Miranda
,
V.
, and
Yihun
,
Y.
,
2021
, “
Design of Bio-Exoskeleton for Elbow Rehabilitation
,”
Proceedings of the 2021 Design of Medical Devices Conference. 2021 Design of Medical Devices Conference.
,
Minneapolis, MN
,
Apr. 12–15
.
61.
Christensen
,
S.
, and
Bai
,
S.
,
2018
, “
Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041008
.
62.
de Andrade
,
R. M.
,
Ulhoa
,
P. H. F.
,
Dias
,
E. A. F.
,
Filho
,
A. B.
, and
Vimieiro
,
C. B. S.
,
2023
, “
Design and Testing a Highly Backdrivable and Kinematic Compatible Magneto-Rheological Knee Exoskeleton
,”
J. Intell. Mater. Syst. Struct.
,
34
(
6
), pp.
653
663
.
63.
Karantarat
,
O.
, and
Kitjaidure
,
Y.
,
2018
, “
The Walking Assistance System Using the Lower Limb Exoskeleton Suit Commanded by Backpropagation Neural Network
,”
2018 11th Biomedical Engineering International Conference (BMEiCON)
,
Chiang Mai, Thailand
,
Nov. 21–24
, pp.
1
5
.
64.
Xiao
,
B.
,
Shao
,
Y.
, and
Zhang
,
W.
,
2019
, “
Design and Optimization of Single-Degree-of-Freedom Six-Bar Mechanisms for Knee Joint of Lower Extremity Exoskeleton Robot
,”
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
,
Dec. 6–8
, pp.
2861
2866
.
65.
Vanteddu
,
T.
, and
Ben-Tzvi
,
P.
,
2020
, “
Stable Grasp Control With a Robotic Exoskeleton Glove
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061015
.
66.
Kim
,
H.-G.
,
Park
,
S.
, and
Han
,
C.
,
2014
, “
Design of a Novel Knee Joint for an Exoskeleton With Good Energy Efficiency for Load-Carrying Augmentation
,”
J. Mech. Sci. Technol.
,
28
(
11
), pp.
4361
4367
.
67.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.
68.
Akgun
,
G.
,
Kaplanoglu
,
E.
,
Cetin
,
A. E.
, and
Ulkir
,
O.
,
2018
, “
Mechanical Design of Exoskeleton for Hand Therapeutic Rehabilitation
,”
J. Res. Mech. Eng.
,
4
(
1
), pp.
09
17
.
69.
Wei
,
W.
,
Zhou
,
B.
,
Fan
,
B.
,
Du
,
M.
,
Bao
,
G.
, and
Cai
,
S.
,
2023
, “
An Adaptive Hand Exoskeleton for Teleoperation System
,”
Chin. J. Mech. Eng.
,
36
.
70.
Sun
,
N.
,
Li
,
G.
, and
Cheng
,
L.
,
2021
, “
Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
1513
1523
.
71.
Karasheva
,
M.
,
Turganbayev
,
A.
,
Aimysheva
,
A.
, and
Niyetkaliyev
,
A.
,
2023
, “
Design of a 3D Printed Miniature Model for Human-Robot Mechanism Coupling for Shoulder Rehabilitation
,”
2023 8th International Conference on Robotics and Automation Engineering (ICRAE)
,
Singapore
,
Nov. 17–19
, pp.
58
65
.
72.
Foumashi
,
M. M.
,
Troncossi
,
M.
, and
Castelli
,
V. P.
,
2013
, “Design of a New Hand Exoskeleton for Rehabilitation of Post-Stroke Patients,”
Romansy 19 Robot Design, Dynamics and Control
,
V.
Padois
,
P.
Bidaud
, and
O.
Khatib
, eds.,
Springer Vienna
,
Vienna, Austria
, pp.
159
166
.
73.
Cui
,
L.
,
Phan
,
A.
, and
Allison
,
G.
,
2015
, “
Design and Fabrication of a Three Dimensional Printable Non-Assembly Articulated Hand Exoskeleton for Rehabilitation
,”
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
, pp.
4627
4630
.
74.
Tang
,
T.
,
Zhang
,
D.
,
Xie
,
T.
, and
Zhu
,
X.
,
2013
, “
An Exoskeleton System for Hand Rehabilitation Driven by Shape Memory Alloy
,”
2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Shenzhen, China
,
Dec. 12–14
, pp.
756
761
.
75.
Conti
,
R.
,
Meli
,
E.
, and
Ridolfi
,
A.
,
2016
, “
A Novel Kinematic Architecture for Portable Hand Exoskeletons
,”
Mechatronics
,
35
, pp.
192
207
.
76.
Iqbal
,
J.
,
Khan
,
H.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2014
, “
A Novel Exoskeleton Robotic System for Hand Rehabilitation—Conceptualization to Prototyping
,”
Biocybern. Biomed. Eng.
,
34
(
2
), pp.
79
89
.
77.
Li
,
J.
,
Zheng
,
R.
,
Zhang
,
Y.
, and
Yao
,
J.
,
2011
, “
iHandRehab: An Interactive Hand Exoskeleton for Active and Passive Rehabilitation
,”
2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, pp.
1
6
.
78.
Agarwal
,
P.
,
Fox
,
J.
,
Yun
,
Y.
,
O’Malley
,
M. K.
, and
Deshpande
,
A. D.
,
2015
, “
An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1747
1772
.
79.
Bataller
,
A.
,
Cabrera
,
J.
,
Clavijo
,
M.
, and
Castillo
,
J.
,
2016
, “
Evolutionary Synthesis of Mechanisms Applied to the Design of an Exoskeleton for Finger Rehabilitation
,”
Mech. Mach. Theory
,
105
, pp.
31
43
. .
80.
Bianchi
,
M.
,
Cempini
,
M.
,
Conti
,
R.
,
Meli
,
E.
,
Ridolfi
,
A.
,
Vitiello
,
N.
, and
Allotta
,
B.
,
2018
, “
Design of a Series Elastic Transmission for Hand Exoskeletons
,”
Mechatronics
,
51
, pp.
8
18
.
81.
Jain
,
P.
,
Himanshu
,
G.
,
Bhupendra
,
M.
,
Dharmendra
,
Y.
,
Aditya
,
V.
,
Kumar
,
D.
, and
Bera
,
T. K.
,
2019
, “
Design of Knee Exoskeleton Using Electromyography Sensor
,”
2019 International Conference on Communication and Electronics Systems (ICCES)
,
Coimbatore, India
,
July 17–19
, pp.
1246
1251
.
82.
Nishad
,
S. S.
,
Dutta
,
A.
, and
Saxena
,
A.
,
2014
, “
Design and Control of a Three Finger Hand Exoskeleton for Translation of a Slender Object
,”
2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Kuala Lumpur, Malaysia
,
Nov. 12–15
, pp.
179
184
.
83.
Gon Kim
,
H.
,
Won Lee
,
J.
,
Jang
,
J.
,
Han
,
C.
, and
Park
,
S.
,
2013
, “
Mechanical Design of an Exoskeleton for Load-Carrying Augmentation
,”
IEEE ISR 2013
,
Seoul, South Korea
,
Oct. 24–26
.
84.
Jo
,
I.
,
Park
,
Y.
,
Lee
,
J.
, and
Bae
,
J.
,
2019
, “
A Portable and Spring-Guided Hand Exoskeleton for Exercising Flexion/Extension of the Fingers
,”
Mech. Mach. Theory
,
135
, pp.
176
191
.
85.
Chen
,
S.
,
Wei
,
S.
,
Chen
,
C.
,
Wang
,
Z.
,
Liu
,
Y.
,
Ye
,
X.
,
Chen
,
L.
, and
Wu
,
X.
,
2022
, “
A Light Knee Exoskeleton for Assisted Ramp Walking
,”
2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
,
Baishan, China
,
July 27–31
, pp.
682
687
.
86.
Lu
,
Z.
,
Huo
,
J.
,
Wang
,
Y.
,
Xin
,
T.
, and
Xie
,
Z.
,
2017
, “
Design and Simulation Analysis of a Lower Limbs Exoskeleton Powered by Hydraulic Drive
,”
2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Hefei and Tai'an, China
,
Aug. 27–31
, pp.
173
177
.
87.
Li
,
H.
,
Cheng
,
L.
, and
Li
,
Z.
,
2020
, “
Design and Control of an Index Finger Exoskeleton With Cable-Driven Translational Joints
,”
2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Shenzhen, China
,
Dec. 18–21
, pp.
540
545
.
88.
Ngeo
,
J.
,
Tamei
,
T.
,
Shibata
,
T.
,
Orlando
,
M. F.
,
Behera
,
L.
,
Saxena
,
A.
, and
Dutta
,
A.
,
2013
, “
Control of an Optimal Finger Exoskeleton Based on Continuous Joint Angle Estimation From EMG Signals
,”
2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Osaka, Japan
,
July 3–7
, pp.
338
341
.
89.
Li
,
J.
,
Wang
,
S.
,
Wang
,
J.
,
Zheng
,
R.
,
Zhang
,
Y.
, and
Chen
,
Z.
,
2012
, “
Development of a Hand Exoskeleton System for Index Finger Rehabilitation
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
223
233
.
90.
Lee
,
J.
, and
Bae
,
J.
,
2015
, “
Design of a Hand Exoskeleton for Biomechanical Analysis of the Stroke Hand
,”
2015 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Singapore
,
Aug. 11–14
, pp.
484
489
.
91.
Zhao
,
L.
,
Tang
,
Y.
,
Wang
,
X.
, and
Guan
,
Z.
,
2022
, “
Design and Driving Rod Group Analysis of a Lower Limb Assisted Exoskeleton
,”
2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
, pp.
624
629
.
92.
Choi
,
H.
,
Park
,
Y. J.
,
Seo
,
K.
,
Lee
,
J.
,
Lee
,
S.
, and
Shim
,
Y.
,
2018
, “
A Multifunctional Ankle Exoskeleton for Mobility Enhancement of Gait-Impaired Individuals and Seniors
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
411
418
.
93.
Hong
,
M. B.
,
Kim
,
S. J.
,
Ihn
,
Y. S.
,
Jeong
,
G.-C.
, and
Kim
,
K.
,
2019
, “
KULEX-Hand: An Underactuated Wearable Hand for Grasping Power Assistance
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
420
432
.
94.
Yun
,
Y.
,
Dancausse
,
S.
,
Esmatloo
,
P.
,
Serrato
,
A.
,
Merring
,
C. A.
,
Agarwal
,
P.
, and
Deshpande
,
A. D.
,
2017
, “
Maestro: An EMG-Driven Assistive Hand Exoskeleton for Spinal Cord Injury Patients
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
2904
2910
.
95.
Balser
,
F.
,
Desai
,
R.
,
Ekizoglou
,
A.
, and
Bai
,
S.
,
2022
, “
A Novel Passive Shoulder Exoskeleton Designed With Variable Stiffness Mechanism
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
2748
2754
.
96.
Sarkisian
,
S. V.
,
Ishmael
,
M. K.
,
Hunt
,
G. R.
, and
Lenzi
,
T.
,
2020
, “
Design, Development, and Validation of a Self-Aligning Mechanism for High-Torque Powered Knee Exoskeletons
,”
IEEE Trans. Med. Rob. Bion.
,
2
(
2
), pp.
248
259
.
97.
Khamar
,
M.
, and
Edrisi
,
M.
,
2018
, “
Designing a Backstepping Sliding Mode Controller for an Assistant Human Knee Exoskeleton Based on Nonlinear Disturbance Observer
,”
Mechatronics
,
54
, pp.
121
132
.
98.
Lee
,
T.
,
Lee
,
D.
,
Song
,
B.
, and
Baek
,
Y. S.
,
2020
, “
Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator
,”
Sensors
,
20
(
1
).
99.
Hyun
,
D. J.
,
Park
,
H.
,
Ha
,
T.
,
Park
,
S.
, and
Jung
,
K.
,
2017
, “
Biomechanical Design of an Agile, Electricity-Powered Lower-Limb Exoskeleton for Weight-Bearing Assistance
,”
Rob. Auton. Syst.
,
95
, pp.
181
195
.
100.
Niyetkaliyev
,
A. S.
,
Sariyildiz
,
E.
, and
Alici
,
G.
,
2020
, “
Kinematic Modeling and Analysis of a Novel Bio-Inspired and Cable-Driven Hybrid Shoulder Mechanism
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011008
.
101.
Lee
,
T.
,
Kim
,
I.
, and
Baek
,
Y. S.
,
2021
, “
Design of a 2DoF Ankle Exoskeleton With a Polycentric Structure and a Bi-Directional Tendon-Driven Actuator Controlled Using a PID Neural Network
,”
Actuators
,
10
(
1
).
102.
DeBoer
,
B.
,
Hosseini
,
A.
, and
Rossa
,
C.
,
2022
, “
A Discrete Non-Linear Series Elastic Actuator for Active Ankle-Foot Orthoses
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6211
6217
.
103.
Hull
,
J.
,
Turner
,
R.
, and
Asbeck
,
A. T.
,
2022
, “
Design and Preliminary Evaluation of Two Tool Support Arm Exoskeletons With Gravity Compensation
,”
Mech. Mach. Theory
,
172
, p.
104802
.
104.
Kim
,
J.-H.
,
Shim
,
M.
,
Ahn
,
D. H.
,
Son
,
B. J.
,
Kim
,
S.-Y.
,
Kim
,
D. Y.
,
Baek
,
Y. S.
, and
Cho
,
B.-K.
,
2015
, “
Design of a Knee Exoskeleton Using Foot Pressure and Knee Torque Sensors
,”
Int. J. Adv. Rob. Syst.
,
12
(
8
), p.
112
.
105.
Li
,
F.
,
Wang
,
Q.
,
Xie
,
Y.
, and
Xie
,
H.
,
2020
, “
Admittance Control of Four-Link Bionic Knee Exoskeleton With Inertia Compensation
,”
Tehn. Vjesnik—Technical Gazette
,
27
(
3
), p.
891+
.
106.
Hong
,
M. B.
,
Kim
,
Y.
,
Kim
,
G. T.
,
Lee
,
M.
, and
Kim
,
S.
,
2023
, “
Design of Novel Knee Joint Mechanism of Lower-Limb Exoskeleton to Realize Spatial Motion of Human Knee
,”
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Detroit, MI
,
Oct. 1–5
, pp.
2419
2425
.
107.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Andersen
,
M. S.
, and
Bai
,
S.
,
2019
, “
A Compact 3-DOF Shoulder Mechanism Constructed With Scissors Linkages for Exoskeleton Applications
,”
Mech. Mach. Theory
,
132
, pp.
264
278
.
108.
Bertomeu
,
J. M. B.
,
Lois
,
J. M. B.
,
Guillem
,
R. B.
,
Del Pozo
,
Á. P.
,
Lacuesta
,
J.
,
Mollà
,
C. G.
,
Luna
,
P. V.
, and
Pastor
,
J. P.
,
2007
, “
Development of a Hinge Compatible With the Kinematics of the Knee Joint
,”
Prosthet. Orthot. Int.
,
31
(
4
), pp.
371
383
.
You do not currently have access to this content.