Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Designing 3D porous metamaterial units while ensuring complete connectivity of both solid and pore phases presents a significant challenge. This complete connectivity is crucial for manufacturability and structure-fluid interaction applications (e.g., fluid-filled lattices). In this study, we propose a generative graph neural network-based framework for designing the porous metamaterial units with the constraint of complete connectivity. First, we propose a graph-based metamaterial unit generation approach to generate porous metamaterial samples with complete connectivity in both solid and pore phases. Second, we establish and evaluate three distinct variational graph autoencoder (VGAE)-based generative models to assess their effectiveness in generating an accurate latent space representation of metamaterial structures. By choosing the model with the highest reconstruction accuracy, the property-driven design search is conducted to obtain novel metamaterial unit designs with the targeted properties. A case study on designing liquid-filled metamaterials for thermal conductivity properties is carried out. The effectiveness of the proposed graph neural network-based design framework is evaluated by comparing the performances of the obtained designs with those of known designs in the metamaterial database. Merits and shortcomings of the proposed framework are also discussed.

References

1.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
, and
Jackson
,
J. A.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
2.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
3.
Garland
,
A. P.
,
Adstedt
,
K. M.
,
Casias
,
Z. J.
,
White
,
B. C.
,
Mook
,
W. M.
,
Kaehr
,
B.
,
Jared
,
B. H.
,
Lester
,
B. T.
,
Leathe
,
N. S.
,
Schwaller
,
E.
, and
Boyce
,
B. L.
,
2020
, “
Coulombic Friction in Metamaterials to Dissipate Mechanical Energy
,”
Extreme Mech. Lett.
,
40
, p.
100847
.
4.
Claeys
,
C.
,
Rocha de Melo Filho
,
N. G.
,
Van Belle
,
L.
,
Deckers
,
E.
, and
Desmet
,
W.
,
2017
, “
Design and Validation of Metamaterials for Multiple Structural Stop Bands in Waveguides
,”
Extreme Mech. Lett.
,
12
, pp.
7
22
.
5.
Qian
,
J.
,
Cheng
,
Y.
,
Zhang
,
A.
,
Zhou
,
Q.
, and
Zhang
,
J.
,
2021
, “
Optimization Design of Metamaterial Vibration Isolator With Honeycomb Structure Based on Multi-Fidelity Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
423
439
.
6.
Wang
,
Z.
,
Xian
,
W.
,
Baccouche
,
M. R.
,
Lanzerath
,
H.
,
Li
,
Y.
, and
Xu
,
H.
,
2022
, “
Design of Phononic Bandgap Metamaterials Based on Gaussian Mixture Beta Variational Autoencoder and Iterative Model Updating
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041705
.
7.
Wang
,
Z.
,
Xian
,
W.
,
Baccouche
,
M. R.
,
Lanzerath
,
H.
,
Li
,
Y.
, and
Xu
,
H.
,
2021
, “
A Gaussian Mixture Variational Autoencoder-Based Approach for Designing Phononic Bandgap Metamaterials
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–20
.
8.
Wang
,
Z.
,
Zhuang
,
R.
,
Xian
,
W.
,
Tian
,
J.
,
Li
,
Y.
,
Chen
,
S.
, and
Xu
,
H.
,
2022
, “
Phononic Metamaterial Design via Transfer Learning-Based Topology Optimization Framework
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
9.
Gurbuz
,
C.
,
Kronowetter
,
F.
,
Dietz
,
C.
,
Eser
,
M.
,
Schmid
,
J.
, and
Marburg
,
S.
,
2021
, “
Generative Adversarial Networks for the Design of Acoustic Metamaterials
,”
J. Acoust. Soc. Am.
,
149
(
2
), pp.
1162
1174
.
10.
Alberdi
,
R.
,
Dingreville
,
R.
,
Robbins
,
J.
,
Walsh
,
T.
,
White
,
B. C.
,
Jared
,
B.
, and
Boyce
,
B. L.
,
2020
, “
Multi-Morphology Lattices Lead to Improved Plastic Energy Absorption
,”
Mater. Des.
,
194
, p.
108883
.
11.
Xu
,
H.
, and
Liu
,
Z.
,
2019
, “
Control Variate Multifidelity Estimators for the Variance and Sensitivity Analysis of Mesostructure–Structure Systems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
5
(
2
), p.
020907
.
12.
Liu
,
Z.
,
Xu
,
H.
, and
Zhu
,
P.
,
2020
, “
An Adaptive Multi-Fidelity Approach for Design Optimization of Mesostructure-Structure Systems
,”
Struct. Multidiscipl. Optim.
,
62
(
1
), pp.
375
386
.
13.
Xu
,
W.
,
Zhang
,
L.
,
Zhang
,
B.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Zhu
,
P.
,
2023
, “
Crushing Behavior of Contact-Aided AlSi10Mg Sandwich Structure Based on Chiral Mechanical Metamaterials
,”
Int. J. Mech. Sci.
,
260
, p.
108636
.
14.
Xu
,
W.
,
Zhou
,
C.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Zhu
,
P.
,
2024
, “
A Flexible Design Framework for Lattice-Based Chiral Mechanical Metamaterials Considering Dynamic Energy Absorption
,”
Thin Walled Struct.
,
203
, p.
112108
.
15.
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2018
, “
Tunable Fluid-Solid Metamaterials for Manipulation of Elastic Wave Propagation in Broad Frequency Range
,”
Appl. Phys. Lett.
,
112
(
22
), p.
221906
.
16.
He
,
Z.-H.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2021
, “
Active Feedback Control of Sound Radiation in Elastic Wave Metamaterials Immersed in Water With Fluid–Solid Coupling
,”
Acta Mech. Sin.
,
37
(
5
), pp.
803
825
.
17.
Song
,
Y.
, and
Shen
,
Y.
,
2022
, “
Highly Morphing and Reconfigurable Fluid–Solid Interactive Metamaterials for Tunable Ultrasonic Guided Wave Control
,”
Appl. Phys. Lett.
,
121
(
26
), p.
264102
.
18.
Gao
,
D.
,
Chen
,
J.
,
Dong
,
Z.
, and
Lin
,
H.
,
2022
, “
Connectivity-Guaranteed Porous Synthesis in Free Form Model by Persistent Homology
,”
Comput. Graph.
,
106
, pp.
33
44
.
19.
Swartz
,
K. E.
,
Tortorelli
,
D. A.
,
White
,
D. A.
, and
James
,
K. A.
,
2022
, “
Manufacturing and Stiffness Constraints for Topology Optimized Periodic Structures
,”
Struct. Multidiscipl. Optim.
,
65
(
4
), p.
129
.
20.
Yang
,
K. V.
,
Rometsch
,
P.
,
Jarvis
,
T.
,
Rao
,
J.
,
Cao
,
S.
,
Davies
,
C.
, and
Wu
,
X.
,
2018
, “
Porosity Formation Mechanisms and Fatigue Response in Al-Si-Mg Alloys Made by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
712
, pp.
166
174
.
21.
Liu
,
R.
,
Agrawal
,
A.
,
Liao
,
W.-K.
,
Choudhary
,
A.
, and
De Graef
,
M.
,
2016
, “
Materials Discovery: Understanding Polycrystals From Large-Scale Electron Patterns
,”
2016 IEEE International Conference on Big Data (Big Data)
,
Washington DC
,
Dec. 5–8
, IEEE, pp.
2261
2269
.
22.
Jha
,
D.
,
Singh
,
S.
,
Al-Bahrani
,
R.
,
Liao
,
W.-K.
,
Choudhary
,
A.
,
De Graef
,
M.
, and
Agrawal
,
A.
,
2018
, “
Extracting Grain Orientations From EBSD Patterns of Polycrystalline Materials Using Convolutional Neural Networks
,”
Microsc. Microanal.
,
24
(
5
), pp.
497
502
.
23.
Cang
,
R.
,
Xu
,
Y.
,
Chen
,
S.
,
Liu
,
Y.
,
Jiao
,
Y.
, and
Yi Ren
,
M.
,
2017
, “
Microstructure Representation and Reconstruction of Heterogeneous Materials via Deep Belief Network for Computational Material Design
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071404
.
24.
Wang
,
Z.
,
Xian
,
W.
,
Baccouche
,
M. R.
,
Lanzerath
,
H.
,
Li
,
Y.
, and
Xu
,
H.
,
2022
, “
Design of Phononic Bandgap Metamaterials Based on Gaussian Mixture Beta Variational Autoencoder and Iterative Model Updating
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041705
.
25.
Wang
,
L.
,
Chan
,
Y.-C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-Driven Metamaterial Design With Laplace-Beltrami Spectrum as ‘Shape-DNA’
,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2613
2628
.
26.
Meyer
,
P. P.
,
Bonatti
,
C.
,
Tancogne-Dejean
,
T.
, and
Mohr
,
D.
,
2022
, “
Graph-Based Metamaterials: Deep Learning of Structure-Property Relations
,”
Mater. Des.
,
223
, p.
111175
.
27.
Bastek
,
J.-H.
,
Kumar
,
S.
,
Telgen
,
B.
,
Glaesener
,
R. N.
, and
Kochmann
,
D. M.
,
2022
, “
Inverting the Structure–Property Map of Truss Metamaterials by Deep Learning
,”
Proc. Natl. Acad. Sci. USA
,
119
(
1
), p.
e2111505119
.
28.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
npj Comput. Mater.
,
6
(
1
), p.
73
.
29.
Gongora
,
A. E.
,
Snapp
,
K. L.
,
Whiting
,
E.
,
Riley
,
P.
,
Reyes
,
K. G.
,
Morgan
,
E. F.
, and
Brown
,
K. A.
,
2021
, “
Using Simulation to Accelerate Autonomous Experimentation: A Case Study Using Mechanics
,”
Iscience
,
24
(
4
), p.
102262
.
30.
Gongora
,
A. E.
,
Xu
,
B.
,
Perry
,
W.
,
Okoye
,
C.
,
Riley
,
P.
,
Reyes
,
K. G.
,
Morgan
,
E. F.
, and
Brown
,
K. A.
,
2020
, “
A Bayesian Experimental Autonomous Researcher for Mechanical Design
,”
Sci. Adv.
,
6
(
15
), p.
eaaz1708
.
31.
Shin
,
D.
,
Cupertino
,
A.
,
de Jong
,
M. H.
,
Steeneken
,
P. G.
,
Bessa
,
M. A.
, and
Norte
,
R. A.
,
2022
, “
Spiderweb Nanomechanical Resonators via Bayesian Optimization: Inspired by Nature and Guided by Machine Learning
,”
Adv. Mater.
,
34
(
3
), p.
2106248
.
32.
Ma
,
J.
,
Huang
,
Y.
,
Pu
,
M.
,
Xu
,
D.
,
Luo
,
J.
,
Guo
,
Y.
, and
Luo
,
X.
,
2020
, “
Inverse Design of Broadband Metasurface Absorber Based on Convolutional Autoencoder Network and Inverse Design Network
,”
J. Phys. D: Appl. Phys.
,
53
(
46
), p.
464002
.
33.
Huang
,
L.
,
Chowdhury
,
D. R.
,
Ramani
,
S.
,
Reiten
,
M. T.
,
Luo
,
S.-N.
,
Azad
,
A. K.
,
Taylor
,
A. J.
, and
Chen
,
H.-T.
,
2012
, “
Impact of Resonator Geometry and Its Coupling With Ground Plane on Ultrathin Metamaterial Perfect Absorbers
,”
Appl. Phys. Lett.
,
101
(
10
), p.
10
.
34.
Wilt
,
J. K.
,
Yang
,
C.
, and
Gu
,
G. X.
,
2020
, “
Accelerating Auxetic Metamaterial Design With Deep Learning
,”
Adv. Eng. Mater.
,
22
(
5
), p.
1901266
.
35.
Bebis
,
G.
, and
Georgiopoulos
,
M.
,
1994
, “
Feed-Forward Neural Networks
,”
IEEE Potentials
,
13
(
4
), pp.
27
31
.
36.
Gu
,
J.
,
Wang
,
Z.
,
Kuen
,
J.
,
Ma
,
L.
,
Shahroudy
,
A.
,
Shuai
,
B.
,
Liu
,
T.
,
Wang
,
X.
,
Wang
,
G.
,
Cai
,
J.
, and
Chen
,
T.
,
2018
, “
Recent Advances in Convolutional Neural Networks
,”
Pattern Recognit.
,
77
, pp.
354
377
.
37.
Indurkar
,
P. P.
,
Karlapati
,
S.
,
Shaikeea
,
A. J. D.
, and
Deshpande
,
V. S.
,
2022
, “Predicting Deformation Mechanisms in Architected Metamaterials Using GNN,” arXiv preprint arXiv:2202.09427.
38.
Yamaguchi
,
K.
,
Yasuda
,
H.
,
Tsujikawa
,
K.
,
Kunimine
,
T.
, and
Yang
,
J.
,
2022
, “
Graph-Theoretic Estimation of Reconfigurability in Origami-Based Metamaterials
,”
Mater. Des.
,
213
, p.
110343
.
39.
Scarselli
,
F.
,
Gori
,
M.
,
Tsoi
,
A. C.
,
Hagenbuchner
,
M.
, and
Monfardini
,
G.
,
2008
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Netw.
,
20
(
1
), pp.
61
80
.
40.
Wu
,
Z.
,
Pan
,
S.
,
Chen
,
F.
,
Long
,
G.
,
Zhang
,
C.
, and
Yu Philip
,
S.
,
2020
, “
A Comprehensive Survey on Graph Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
1
), pp.
4
24
.
41.
Guo
,
K.
, and
Buehler
,
M. J.
,
2020
, “
A Semi-Supervised Approach to Architected Materials Design Using Graph Neural Networks
,”
Extreme Mech. Lett.
,
41
, p.
101029
.
42.
Dold
,
D.
, and
van Egmond
,
D. A.
,
2023
, “
Differentiable Graph-Structured Models for Inverse Design of Lattice Materials
,”
Cell Reports Physical Science
,
4
(
10
).
43.
Zhang
,
C.
,
Ridard
,
A.
,
Kibsey
,
M.
, and
Zhao
,
Y. F.
,
2023
, “
Variant Design Generation and Machine Learning Aided Deformation Prediction for Auxetic Metamaterials
,”
Mech. Mater.
,
181
, p.
104642
.
44.
Holdstein
,
Y.
,
Fischer
,
A.
,
Podshivalov
,
L.
, and
Bar-Yoseph
,
P. Z.
,
2009
, “
Volumetric Texture Synthesis of Bone Micro-Structure as a Base for Scaffold Design
,”
2009 IEEE International Conference on Shape Modeling and Applications
,
Beijing, China
,
June 26–28
, IEEE, pp.
81
88
.
45.
Men
,
H.
,
Lee
,
K. Y.
,
Freund
,
R. M.
,
Peraire
,
J.
, and
Johnson
,
S. G.
,
2014
, “
Robust Topology Optimization of Three-Dimensional Photonic-Crystal Band-Gap Structures
,”
Opt. Express
,
22
(
19
), pp.
22632
22648
.
46.
Kench
,
S.
, and
Cooper
,
S. J.
,
2021
, “Generating 3D Structures From a 2D Slice With GAN-Based Dimensionality Expansion,” arXiv preprint arXiv:2102.07708.
47.
Zheng
,
X.
,
Guo
,
X.
,
Yang
,
Y.
,
Fu
,
Z.
,
Du
,
K.
,
Wang
,
C.
, and
Yi
,
Y.
,
2018
, “
Structure-Dependent Analysis of Nanoporous Metals: Clues From Mechanical, Conduction, and Flow Properties
,”
J. Phys. Chem. C
,
122
(
29
), pp.
16803
16809
.
48.
Xu
,
H.
,
Dikin
,
D. A.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.
49.
Makatura
,
L.
,
Wang
,
B.
,
Chen
,
Y.-L.
,
Deng
,
B.
,
Wojtan
,
C.
,
Bickel
,
B.
, and
Matusik
,
W.
,
2023
, “
Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design
,”
ACM Trans. Graph.
,
42
(
5
), pp.
1
19
.
50.
Du
,
P.
,
Zebrowski
,
A.
,
Zola
,
J.
,
Ganapathysubramanian
,
B.
, and
Wodo
,
O.
,
2018
, “
Microstructure Design Using Graphs
,”
npj Comput. Mater.
,
4
(
1
), p.
50
.
51.
Szabo
,
F.
,
2015
,
The Linear Algebra Survival Guide: Illustrated with Mathematica
,
Academic Press
,
Cambridge, MA
.
52.
Otair
,
D. M.
,
2013
, “Approximate k-Nearest Neighbour Based Spatial Clustering Using kd Tree,” arXiv preprint arXiv:1303.1951.
53.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “Variational Graph Auto-Encoders,” arXiv preprint arXiv:1611.07308.
54.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “Auto-Encoding Variational Bayes,” arXiv preprint arXiv:1312.6114.
55.
Xu
,
L.
,
Hoffman
,
N.
,
Wang
,
Z.
, and
Xu
,
H.
,
2022
, “
Harnessing Structural Stochasticity in the Computational Discovery and Design of Microstructures
,”
Mater. Des.
,
223
, p.
111223
.
56.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.
57.
Wang
,
Z.
, and
Xu
,
H.
,
2024
, “
Manufacturability-Aware Deep Generative Design of 3D Metamaterial Units for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
67
(
2
), p.
22
.
58.
Xu
,
L.
,
Naghavi Khanghah
,
K.
, and
Xu
,
H.
,
2024
, “
Designing Mixed-Category Stochastic Microstructures by Deep Generative Model-Based and Curvature Functional-Based Methods
,”
ASME J. Mech. Des.
,
146
(
4
), p.
041702
.
59.
Xu
,
L.
,
Naghavi Khanghah
,
K.
, and
Xu
,
H.
,
2023
, “
Design of Mixed-Category Stochastic Microstructures: A Comparison of Curvature Functional-Based and Deep Generative Model-Based Methods
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
60.
Zheng
,
L.
,
Karapiperis
,
K.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2023
, “
Unifying the Design Space and Optimizing Linear and Nonlinear Truss Metamaterials by Generative Modeling
,”
Nat. Commun.
,
14
(
1
), p.
7563
.
61.
Hamilton
,
W.
,
Ying
,
Z.
, and
Leskovec
,
J.
,
2017
, “Inductive Representation Learning on Large Graphs,”
Advances in Neural Information Processing Systems
,
I.
Guyon
,
U.
von Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
, and
S. V. N.
Vishwanathan
, eds., Vol.
30
,
NeurIPS Foundation
,
La Jolla, CA
, pp.
1025
1035
.
62.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.