Abstract

Artificial intelligence and machine learning frameworks have become powerful tools for establishing computationally efficient mappings between inputs and outputs in engineering problems. These mappings have enabled optimization and analysis routines, leading to innovative designs, advanced material systems, and optimized manufacturing processes. In such modeling efforts, it is common to encounter multiple information (data) sources, each varying in specifications. Data fusion frameworks offer the capability to integrate these diverse sources into unified models, enhancing predictive accuracy and enabling knowledge transfer. However, challenges arise when these sources are heterogeneous, i.e., they do not share the same input parameter space. Such scenarios occur when domains differentiated by complexity such as fidelity, operating conditions, experimental setup, and scale, require distinct parametrizations. To address this challenge, a two-stage heterogeneous multi-source data fusion framework based on the input mapping calibration (IMC) and the latent variable Gaussian process (LVGP) is proposed. In the first stage, the IMC algorithm transforms the heterogeneous input parameter spaces into a unified reference parameter space. In the second stage, an LVGP-enabled multi-source data fusion model constructs a single-source-aware surrogate model on the unified reference space. The framework is demonstrated and analyzed through three engineering modeling case studies with distinct challenges: cantilever beams with varying design parametrizations, ellipsoidal voids with varying complexities and fidelities, and Ti6Al4V alloys with varying manufacturing modalities. The results demonstrate that the proposed framework achieves higher predictive accuracy compared to both independent single-source and source-unaware data fusion models.

References

1.
Ravi
,
S.
,
Bhaduri
,
A.
,
Amer
,
A.
,
Ghosh
,
S.
,
Wang
,
L.
,
Hoffman
,
A.
,
Umretiya
,
R.
, et al
,
2023
, “
On Uncertainty Quantification in Materials Modeling and Discovery: Applications of GE's BHM and IDACE
,”
AIAA SciTech 2023 Forum
,
National Harbor, MD
,
Jan. 23
.
2.
Luan
,
L.
,
Jacobs
,
R.
,
Ghosh
,
S.
, and
Wang
,
L.
,
2024
, “
Physics-Informed Research Assistant for Theory Extraction (Pirate) for Missing Physics Discovery
,”
AIAA SciTech 2024 Forum
, p.
0171
.
3.
Luan
,
L.
,
Jacobs
,
R.
,
Ghosh
,
S.
, and
Wang
,
L.
,
2023
, “
Physics Discovery of Engineering Applications With Constrained Optimization and Genetic Programming
,”
Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers
, Vol.
87066
, p.
V11BT25A005
.
4.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
5.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What’s Next
,”
J. Sci. Comput.
,
92
(
3
), p.
88
.
6.
Krishnan
,
S.
,
Ghosh
,
S.
,
Atkinson
,
S.
,
Andreoli
,
V.
,
Vandeputte
,
T.
, and
Wang
,
L.
,
2022
, “
Transfer Learning Based Modeling of Industrial Turbine Airfoil Characteristics
,”
AIAA SciTech 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
2105
.
7.
Ravi
,
S.
,
Pandita
,
P.
,
Ghosh
,
S.
,
Bhaduri
,
A.
,
Andreoli
,
V.
, and
Wang
,
L.
,
2023
, “
Probabilistic Transfer Learning Through Ensemble Probabilistic Deep Neural Network
,”
AIAA SciTech 2023 Forum
,
National Harbor, MD
,
Jan. 23
, p.
1479
.
8.
Ravi
,
S. K.
,
Comlek
,
Y.
,
Pathak
,
A.
,
Gupta
,
V.
,
Umretiya
,
R.
,
Hoffman
,
A.
,
Pilania
,
G.
, et al
,
2024
, “
Interpretable multi-source data fusion through Latent Variable Gaussian Process
,”
Eng. Appl. Artif. Intell.
, p.
110033
.
9.
Yousefpour
,
A.
,
Foumani
,
Z. Z.
,
Shishehbor
,
M.
,
Mora
,
C.
, and
Bostanabad
,
R.
,
2024
, “
GP+: A Python Library for Kernel-Based Learning Via Gaussian Processes
,”
Adv. Eng. Softw.
,
195
, p.
103686
.
10.
Eweis-Labolle
,
J. T.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2022
, “
Data Fusion With Latent Map Gaussian Processes
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091703
.
11.
Foumani
,
Z. Z.
,
Shishehbor
,
M.
,
Yousefpour
,
A.
, and
Bostanabad
,
R.
,
2023
, “
Multi-fidelity Cost-Aware Bayesian Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
407
, p.
115937
.
12.
Zanjani Foumani
,
Z.
,
Yousefpour
,
A.
,
Shishehbor
,
M.
, and
Bostanabad
,
R.
,
2024
, “
Safeguarding Multi-fidelity Bayesian Optimization Against Large Model Form Errors and Heterogeneous Noise
,”
ASME J. Mech. Des.
,
146
(
6
), p.
061703
.
13.
Menon
,
N.
, and
Basak
,
A.
,
2024
, “Multi-fidelity Surrogate With Heterogeneous Input Spaces for Modeling Melt Pools in Laser-Directed Energy Deposition,” arXiv preprint arXiv:2403.13136.
14.
Day
,
O.
, and
Khoshgoftaar
,
T. M.
,
2017
, “
A Survey on Heterogeneous Transfer Learning
,”
J. Big Data
,
4
, pp.
1
42
.
15.
Bao
,
R.
,
Sun
,
Y.
,
Gao
,
Y.
,
Wang
,
J.
,
Yang
,
Q.
,
Chen
,
H.
,
Mao
,
Z.-H.
,
Xie
,
X.
, and
Ye
,
Y.
,
2023
, “A Survey on Heterogeneous Transfer Learning,” arXiv preprint arXiv:2310.08459.
16.
Shi
,
X.
,
Liu
,
Q.
,
Fan
,
W.
,
Philip
,
S. Y.
, and
Zhu
,
R.
,
2010
, “
Transfer Learning on Heterogenous Feature Spaces Via Spectral Transformation
,”
2010 IEEE International Conference on Data Mining
,
Sydney, Australia
,
Dec. 13
, IEEE, pp.
1049
1054
.
17.
Duan
,
L.
,
Xu
,
D.
, and
Tsang
,
I.
,
2012
, “Learning With Augmented Features for Heterogeneous Domain Adaptation,” arXiv preprint arXiv:1206.4660.
18.
Wang
,
C.
, and
Mahadevan
,
S.
,
2011
, “
Heterogeneous Domain Adaptation Using Manifold Alignment
,”
IJCAI Proceedings of International Joint Conference on Artificial Intelligence
,
Barcelona, Spain
,
July 16
, Vol. 22, p.
1541
.
19.
Liu
,
H.
,
Wu
,
K.
,
Ong
,
Y.-S.
,
Bian
,
C.
,
Jiang
,
X.
, and
Wang
,
X.
,
2023
, “
Learning Multitask Gaussian Process Over Heterogeneous Input Domains
,”
IEEE Trans. Syst. Man. Cybern. Syst.
,
53
(
10
), pp.
6232
6244
.
20.
Gorodetsky
,
A. A.
,
Jakeman
,
J. D.
,
Geraci
,
G.
, and
Eldred
,
M. S.
,
2020
, “
MFNets: Multi-fidelity Data-Driven Networks for Bayesian Learning and Prediction
,”
Int. J. Uncertainty Quantif.
,
10
(
6
).
21.
Jin
,
S.-S.
,
Kim
,
S. T.
, and
Park
,
Y.-H.
,
2021
, “
Combining Point and Distributed Strain Sensor for Complementary Datafusion: A Multi-fidelity Approach
,”
Mech. Syst. Signal Process
,
157
, p.
107725
.
22.
Tao
,
S.
,
Apley
,
D. W.
,
Chen
,
W.
,
Garbo
,
A.
,
Pate
,
D. J.
, and
German
,
B. J.
,
2019
, “
Input Mapping for Model Calibration With Application to Wing Aerodynamics
,”
AIAA J.
,
57
(
7
), pp.
2734
2745
.
23.
Hebbal
,
A.
,
Brevault
,
L.
,
Balesdent
,
M.
,
Talbi
,
E.-G.
, and
Melab
,
N.
,
2019
, “
Multi-fidelity Modeling Using DGPS: Improvements and a Generalization to Varying Input Space Dimensions
,”
4th Workshop on Bayesian Deep Learning (NeurIPS 2019)
,
Vancouver, Canada
,
Dec. 8
.
24.
Hebbal
,
A.
,
Brevault
,
L.
,
Balesdent
,
M.
,
Talbi
,
E.-G.
, and
Melab
,
N.
,
2021
, “
Multi-fidelity Modeling With Different Input Domain Definitions Using Deep Gaussian Processes
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
2267
2288
.
25.
Bandler
,
J. W.
,
Biernacki
,
R. M.
,
Chen
,
S. H.
,
Grobelny
,
P. A.
, and
Hemmers
,
R. H.
,
1994
, “
Space Mapping Technique for Electromagnetic Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
42
(
12
), pp.
2536
2544
.
26.
Koziel
,
S.
, and
Bekasiewicz
,
A.
,
2018
, “
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
,”
IEEE Trans. Microwave Theory Tech.
,
28
(
4
), pp.
275
277
.
27.
Jiang
,
P.
,
Xie
,
T.
,
Zhou
,
Q.
,
Shao
,
X.
,
Hu
,
J.
, and
Cao
,
L.
,
2018
, “
A Space Mapping Method Based on Gaussian Process Model for Variable Fidelity Metamodeling
,”
Simul. Modell. Pract. Theory
,
81
, pp.
64
84
.
28.
Zhang
,
Y.
,
Tao
,
S.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2020
, “
A Latent Variable Approach to Gaussian Process Modeling With Qualitative and Quantitative Factors
,”
Technometrics
,
62
(
3
), pp.
291
302
.
29.
Pan
,
S. J.
,
Tsang
,
I. W.
,
Kwok
,
J. T.
, and
Yang
,
Q.
,
2010
, “
Domain Adaptation Via Transfer Component Analysis
,”
IEEE Trans. Neural Netw.
,
22
(
2
), pp.
199
210
.
30.
Wang
,
Y.
,
Iyer
,
A.
,
Chen
,
W.
, and
Rondinelli
,
J. M.
,
2020
, “
Featureless Adaptive Optimization Accelerates Functional Electronic Materials Design
,”
Appl. Phys. Rev.
,
7
(
4
), p.
0411403
.
31.
Iyer
,
A.
,
Zhang
,
Y.
,
Prasad
,
A.
,
Gupta
,
P.
,
Tao
,
S.
,
Wang
,
Y.
,
Prabhune
,
P.
,
Schadler
,
L. S.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2020
, “
Data Centric Nanocomposites Design Via Mixed-Variable Bayesian Optimization
,”
Mol. Syst. Des. Eng.
,
5
(
8
), pp.
1376
1390
.
32.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
.
33.
Prabhune
,
P.
,
Comlek
,
Y.
,
Shandilya
,
A.
,
Sundararaman
,
R.
,
Schadler
,
L. S.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2023
, “
Design of Polymer Nanodielectrics for Capacitive Energy Storage
,”
Nanomaterials
,
13
(
17
), p.
2394
.
34.
Comlek
,
Y.
,
Pham
,
T. D.
,
Snurr
,
R. Q.
, and
Chen
,
W.
,
2023
, “
Rapid Design of Top-Performing Metal-Organic Frameworks With Qualitative Representations of Building Blocks
,”
npj Comput. Mater.
,
9
(
1
), p.
170
.
35.
Luo
,
Q.
,
Yin
,
L.
,
Simpson
,
T. W.
, and
Beese
,
A. M.
,
2022
, “
Effect of Processing Parameters on Pore Structures, Grain Features, and Mechanical Properties in Ti-6Al-4V by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
56
, p.
102915
.
36.
Luo
,
Q.
,
Yin
,
L.
,
Simpson
,
T. W.
, and
Beese
,
A. M.
,
2023
, “
Dataset of Process-Structure-Property Feature Relationship for Laser Powder Bed Fusion Additive Manufactured Ti-6Al-4V Material
,”
Data Brief
,
46
, p.
108911
.
37.
Ran
,
J.
,
Jiang
,
F.
,
Sun
,
X.
,
Chen
,
Z.
,
Tian
,
C.
, and
Zhao
,
H.
,
2020
, “
Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Electron Beam Melting
,”
Crystals
,
10
(
11
), p.
972
.
38.
Fall
,
A.
,
Jahazi
,
M.
,
Khdabandeh
,
A.
, and
Fesharaki
,
M.
,
2017
, “
Effect of Process Parameters on Microstructure and Mechanical Properties of Friction Stir-Welded Ti–6Al–4V Joints
,”
Int. J. Adv. Manuf. Technol.
,
91
, pp.
2919
2931
.
39.
van Beek
,
A.
,
Nevile Karkaria
,
V.
, and
Chen
,
W.
,
2023
, “
Digital Twins for the Designs of Systems: A Perspective
,”
Struct. Multidiscipl. Optim.
,
66
(
3
), p.
49
.
40.
Zhang
,
Y.
, and
Yang
,
Q.
,
2018
, “
An Overview of Multi-task Learning
,”
Natl. Sci. Rev.
,
5
(
1
), pp.
30
43
.
41.
Mammen
,
P. M.
,
2021
, “Federated Learning: Opportunities and Challenges,” arXiv preprint arXiv:2101.05428.
42.
Li
,
L.
,
Fan
,
Y.
,
Tse
,
M.
, and
Lin
,
K.-Y.
,
2020
, “
A Review of Applications in Federated Learning
,”
Comput. Ind. Eng.
,
149
, p.
106854
.
43.
Zhang
,
C.
,
Xie
,
Y.
,
Bai
,
H.
,
Yu
,
B.
,
Li
,
W.
, and
Gao
,
Y.
,
2021
, “
A Survey on Federated Learning
,”
Knowl. Based Syst.
,
216
, p.
106775
.
44.
Chen
,
Y.-P.
,
Wang
,
L.
,
Comlek
,
Y.
, and
Chen
,
W.
,
2024
, “
A Latent Variable Approach for Non-Hierarchical Multi-fidelity Adaptive Sampling
,”
Comput. Methods Appl. Mech. Eng.
,
421
, p.
116773
.
45.
Wilkinson
,
M. D.
,
Dumontier
,
M.
,
Aalbersberg
,
I. J.
,
Appleton
,
G.
,
Axton
,
M.
,
Baak
,
A.
,
Blomberg
,
N.
, et al
,
2016
, “
The Fair Guiding Principles for Scientific Data Management and Stewardship
,”
Sci. Data
,
3
(
1
), pp.
1
9
.
46.
Yerramilli
,
S.
,
Iyer
,
A.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2023
, “
Fully Bayesian Inference for Latent Variable Gaussian Process Models
,”
SIAM/ASA J. Uncertainty
,
11
(
4
), pp.
1357
1381
.
You do not currently have access to this content.